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Chapter 1

Commutative Algebra

In this chapter, we collect some results of commutative algebra.

Theorem 1.1 (Hilbert’s Nullstellensatz). Let 𝑘 be a field and 𝐴 be a finitely generated
𝑘-algebra. Then for every prime ideal 𝔭 of 𝐴,

𝔭 = ⋂
𝔭≤𝔪 is maximal

𝔪.

If 𝔪 is a maximal ideal of 𝐴, then 𝑘 ↪ 𝐴/𝔪 is a finite field extension.

Proof.

Corollary 1.2. Let 𝑘 be an algebraically closed filed and 𝐴 a finitely generated 𝑘-algebra,
then 𝐴/𝔪 is isomorphic to 𝑘.

Proof. The field extension 𝐴/𝔪 over 𝑘 is finite hence algebraic. Since 𝑘 is algebraically
closed, 𝐴/𝔪 is isomorphic to 𝑘.

Corollary 1.3. Let 𝑘 be an algebraically closed field and 𝐴 a finitely generated 𝑘-algebras,
then each maximal ideals 𝔪 � 𝐴 is the kernel of a unique algebra homomorphism 𝜙𝔪 ∶ 𝐴 → 𝑘

Proof. Existence: the kernel of 𝐴 𝜋→ 𝐴/𝔪 ∼→ 𝑘 is exactly 𝔪.
Uniqueness: assume 𝜙 and 𝜓 are two ℂ-algebra homomorphism such that 𝔪 = ker 𝜙 =

ker 𝜓. Let 𝜌 ∶ ℂ → 𝑅 be the structure map of 𝑅. For any 𝑟 ∈ 𝑅, we claim that there
exists some 𝑥 ∈ 𝔪 and 𝜆 ∈ ℂ, such that 𝑟 = 𝑥 + 𝜌(𝜆). Indeed, we have that 𝑟 = (𝑟 −
𝜌(𝜙(𝑟))) + 𝜌(𝜙(𝑟)), and 𝑟 − 𝜌(𝜙(𝑟)) is in the kernel of 𝜙. Thus for every 𝑟 = 𝑚 + 𝜌(𝜆), we
have 𝜙(𝑟) = 𝜙(𝜌(𝜆)) = 𝜓(𝜌(𝜆)) = 𝜓(𝑟).
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Chapter 2

Schemes of finite type over ℂ

2.1 Some general scheme theory
Before we can define our main object of interest, schemes of finite type over ℂ, we need to
introduce some preliminary notions.

We already have the following in mathlib4 thanks to Andrew Yang:

Definition 2.1 (Local property of ring homomorphisms). Let 𝑃 be a property of ring ho-
momorphisms: we say the property 𝑃 is local if

1. if 𝑃 holds for 𝜙 ∶ 𝐴 → 𝐵, then 𝑃 holds for 𝜙𝑆 ∶ 𝑆−1𝐴 → ⟨𝑓 (𝑆)⟩−1 𝐵 for any submonoid
𝑆 ⊆ 𝐴.

2. Let 𝜙 ∶ 𝐴 → 𝐵 be a ring homomorphism, if 𝑃 holds for 𝐴 𝜙→ 𝐵 → 𝐵𝑓𝑖 for some {𝑓𝑖} ⊆ 𝐵
such that ⟨𝑓𝑖⟩ = 𝐵, then 𝑃 holds for 𝜙.

3. Let 𝜙 ∶ 𝐴 → 𝐵 and 𝜓 ∶ 𝐵 → 𝐶 be two ring homomorphisms, if 𝑃 holds for 𝜙 and 𝜓,
then 𝑃 holds for 𝜓 ∘ 𝜙.

4. 𝑃 holds for 𝐴 → 𝐴𝑓 for all 𝑓 ∈ 𝐴.

Proposition 2.2. The property “finite type” of ring homomorphisms is local in the sense
of Definition 2.1.

Definition 2.3. If 𝑃 is a property of ring homomorphisms then the property affine locally 𝑃
of scheme morphism (𝜙, 𝜙∗) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) holds if and only if 𝑃 holds for all ring
homomorphism Γ(𝑈, 𝒪𝑋) → Γ(𝑉, 𝒪𝑌) for all affine subsets 𝑈 ⊆ 𝑋 and 𝑉 ⊆ 𝑌 such that
𝜙(𝑈) ≤ 𝑉.

Definition 2.4 (Morphisms locally of finite type [3, 01T0]). Let Φ ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) ∶=
(𝜙, 𝜙∗) be a morphism of schemes. We say

1. Φ is locally of finite type if for any affine open 𝑉 ⊆ 𝑌 and affine open 𝑈 ⊆ 𝑋 such
that 𝜙(𝑈) ⊆ 𝑉, we have the induced map Γ(𝑈, 𝒪𝑋) → Γ(𝑉, 𝒪𝑉) is a ring map of finite
type. In another word, Φ is affine locally a ring homomorphism of finite type.

2. Φ is of finite type if it is locally of finite type and 𝜙 is quasi-compact.
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Proposition 2.5. Let Φ ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be an open immersion between schemes, then
Φ is locally of finite type.

Proposition 2.6. Let Φ ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of schemes and 𝒰 = {𝑈𝑖} be
an open covering of 𝑋, then affine locally Φ is locally of finite type if and only if Φ|𝑈𝑖

is a
morphism locally of finite type.

Proposition 2.7. Let Φ ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of schemes and 𝒰 = {𝑈𝑖} be
an affine open covering of 𝑌. Consider the pullback cover 𝒱 = {𝑉𝑖} of 𝑋, and if for each 𝑖,
there is an affine open cover 𝒲𝑖 = {𝑊𝑖,𝑗} for 𝑉𝑖 ⊆ 𝑋. Then Φ is locally of finite type if and
only if, for each 𝑖 and 𝑗, the ring map Γ(𝑊𝑖,𝑗, 𝒪𝑋) → Γ(𝑈𝑖, 𝒪𝑌) is of finite type.

Proposition 2.8. Composition of morphisms locally of finite type is locally of finite type.

2.2 Basic definitions and properties
Definition 2.9 (Schemes locally of finite type over ℂ). A scheme (𝑋, 𝒪𝑋) is locally of
finite type over ℂ if (𝑋, 𝒪𝑋) is a scheme over ℂ and the structure morphism (𝑋, 𝒪𝑋) →
(Spec ℂ, ℂ̃) is a morphism locally of finite type.

Definition 2.10 (Schemes of finite type over ℂ). A scheme (𝑋, 𝒪𝑋) is of finite type over
ℂ if (𝑋, 𝒪𝑋) is locally of finite type over ℂ and the structure morphism is quasicompact.

Let us unpack the Definition 2.9 a little:

Definition 2.11 (Affine open covering of spectra of finitely generated ℂ-algebras). An
affine open covering of spectra of finitely generated ℂ-algebra for a scheme (𝑋, 𝒪𝑋) over ℂ
is the following data:

1. indexing set: 𝐼;

2. a family of finitely generated algebras: 𝑅 ∶ 𝐼 → FGCAlgℂ;

3. a family of open immersions: for each 𝑖 ∈ 𝐼, 𝜄𝑖 ∶ (Spec 𝑅𝑖, 𝑅𝑖) → (𝑋, 𝒪𝑋);

4. covering: 𝑐 ∶ 𝑋 → 𝐼 such that for each 𝑥 ∈ 𝑋, 𝑐𝑥 ∈ range (𝜄𝑖).

Lemma 2.12. A scheme (𝑋, 𝒪𝑋) is locally of finite type over ℂ if it is a scheme over ℂ
and it admits an affine open cover of spectra of finitely generated ℂ-algebras.

Proof. This is unpacking Definition 2.9

Proposition 2.13. Let (𝑋, 𝒪𝑋) be a scheme locally of finite type over ℂ, let 𝑈 ⊆ 𝑋 be an
open subset, then (𝑈, 𝒪𝑋 ∣𝑈) is a scheme locally of finite type over ℂ.

Proof. By Proposition 2.5 and Proposition 2.8, open immersions are locally of finite type
and composition of morphisms locally of finite type is again locally of finite type, so

(𝑈, 𝒪𝑋 |𝑈) ↪ (𝑋, 𝒪𝑋) → (Spec ℂ, ℂ̃)

is a morphism locally of finite type as well.

Proposition 2.14. If (𝑋, 𝒪𝑋) is a scheme locally of finite type over ℂ, and 𝑈 = (Spec 𝐴, 𝐴)
is an open affine subscheme of (𝑋, 𝒪𝑋), then 𝐴 ≅ Γ(𝑈, 𝒪𝑋) is a finitely generated ℂ-algebra
as well.
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Proof. Consider the only open affine cover {Spec ℂ} of Spec ℂ, its pullback cover is {𝑋ℂ ∶=
𝑋 ×Spec ℂ Spec ℂ} where 𝑋ℂ can be covered by 𝑈𝑖 ×Spec ℂ Spec ℂ where 𝑈𝑖 runs over the
collection of all affine open sets. Then the conclusion follows from Proposition 2.7.

Lemma 2.15. If 𝑈 ⊆ Spec 𝐴 is an open subset where 𝐴 is a finite ℂ-algebra, then 𝑈 admits
a finite covering of 𝐷(𝑓1), … , 𝐷(𝑓𝑛) where 𝐷(𝑥) is the basic open around 𝑥 ∈ 𝐴.

Proof. Since 𝑈 is open, its complement 𝑈∁ is of the form 𝑉(𝐼) for some ideal 𝐼. Since 𝐴 is a
finite ℂ-algebra, 𝐼 is the span of {𝑓1, … , 𝑓𝑛} for some 𝑓𝑖 ∈ 𝐴. Thus 𝑉(𝐼) is ⋂𝑖 𝑉(𝑓𝑖 ⋅ 𝑅) hence
𝑈 is ⋃𝑖 𝐷(𝑓𝑖).

Lemma 2.16. If (𝑋, 𝒪𝑋) is a scheme of finite type over ℂ and 𝑉 ⊆ 𝑋 is an open subset,
then 𝑉 is quasi-compact.

Proof. Since (𝑋, 𝒪𝑋) is of finite type, it has a finite affine covering 𝒰𝑖 = {𝑈1, … , 𝑈𝑛}. It is
sufficient to show that every open cover of 𝑈𝑖 ∩ 𝑉 has a finite subcover1. In another word,
we only need to show if (𝑋, 𝒪𝑋) ≅ (Spec 𝐴, 𝐴) is affine and 𝑉 is an open subset of 𝑋, then
𝑉 is quasicompact. Since 𝑉 is a finite union of 𝐷(𝑓1), … , 𝐷(𝑓𝑛) for some 𝑓𝑖’s in 𝐴, we only
need to show that 𝐷(𝑓 ) is quasicompact. Since 𝐷(𝑓 ) is affine, it is quasicompact.

Corollary 2.17 (restriction of scheme of finite type over ℂ). Let (𝑋, 𝒪𝑋) be a scheme of
finite type over ℂ and 𝑈 ⊆ 𝑋 be open, then the restriction (𝑈, 𝒪𝑋 |𝑈) is a scheme of finite
type over ℂ as well.

Proposition 2.18. Let (Spec 𝐴, 𝐴) and (Spec 𝐵, �̃�) be two affine finite schemes over ℂ.
Then any morphism Φ ∶ (Spec 𝐴, 𝐴) → (Spec 𝐵, �̃�) is of the form (𝜙, 𝜙⋆) where 𝜙 ∶ 𝐵 → 𝐴
is a ℂ-algebra homomorphism.

Proof. We have a ring homomorphism 𝜙, just need to check it commutes with algebra
map.

Maybe we should construct the following and recover the previous lemma as a corollary:

Proposition 2.19. The category of affine scheme over ℂ is antiquivalent to commutative
ℂ-algebras. The category of affine finite scheme over ℂ is antiequivalent to finitely generated
commutative ℂ-algebras.

ASchop
ℂ ≅ CAlgℂ

AFiniteSchop
ℂ ≅ FGCAlgℂ

Lemma 2.20. Let 𝜙 ∶ 𝑅 → 𝑆 be a surjective ℂ-algebra homomorphisms between finite
ℂ-algebras, then Spec 𝜙 ∶ Spec 𝑆 → Spec 𝑅 is an embedding.

Proof. Spec 𝜙 is injective since 𝜙 is surjective. We need to check that every open set in
Spec 𝑆 is an inverse image of some open set in Spec 𝑅. Since Spec 𝑆 has a basis of basic open
sets 𝐷(𝑓 )’s where 𝑓 ∈ 𝑆, we only need to check 𝐷(𝑓 ) is the inverse image of some open set
in Spec 𝑅. Since 𝜃 is surjective, we know that 𝜃(𝑟) = 𝑓 for some 𝑟 ∈ 𝑅. Then 𝐷(𝑓 ) ⊆ Spec 𝑆
is the inverse image of 𝐷(𝑟) ⊆ Spec 𝑅.

1finite union of quasicompact set is again quasicompact

4



2.3 Closed points
In this section, we focus on the subset set of closed points of a scheme locally of finite type
over ℂ, preparing for the complex topology. Let us fix some notation first: for an arbitrary
scheme (𝑋, 𝒪𝑋), we denote Max {𝑋} to be the set of all closed points of 𝑋 and MaxSpec 𝑅
to be the set of all maximal ideals of a ring 𝑅. Note that MaxSpec 𝑅 is exactly Max {Spec 𝑅}
and we use both interchangeably.

Proposition 2.21. Let (Spec 𝐴, 𝐴) be an affine finite scheme over ℂ. We have that the
set of closed points MaxSpec 𝐴 are in bijection to HomCAlgℂ

(𝐴, ℂ)

Proof. From Corollary 1.3, we know that for each closed point 𝔪, i.e. a maximal ideal, there
is a unique 𝜙𝔪 ∶ 𝐴 → ℂ whose kernel is 𝔪. Conversely, for any 𝜙 ∶ 𝐴 → ℂ, ker 𝜙 is certainly
a prime ideal2. Since 𝜙 is surjective3, its kernel is maximal.

It remains to show that 𝔪 ↦ 𝜙𝔪 and 𝜙 ↦ ker 𝜙 are inverse to each other. But this
follows from the uniqueness from Corollary 1.3: Let 𝔪 be a maximal ideal, then the ker 𝜙𝔪
is exactly 𝔪 by definition of 𝜙𝔪; on the other hand, if 𝜙 is an algebra homomorphism then 𝜙
and 𝜙ker 𝜙 are both algebra homomorphism that has kernel ker 𝜙, hence must be equal.

Corollary 2.22. Let (Spec 𝐴, 𝐴) be an affine finite scheme over ℂ. We have that the
MaxSpec 𝐴 is in bijection with HomSch/ℂ ((Spec ℂ, ℂ̃) , (Spec 𝐴, 𝐴))

Proposition 2.23. If (𝑋, 𝒪𝑋) is a scheme locally of finite type over ℂ, then Max {𝑋} is
in bijection with 𝑋(ℂ) ∶= HomSch/ℂ ((Spec ℂ, ℂ̃) , (𝑋, 𝒪𝑋)), such that every closed point
𝑝, is the image of ⋆ of a unique morphism Φ𝑝; and for each morphism Φ ∶ (Spec ℂ, ℂ̃) →
(𝑋, 𝒪𝑋), Φ(⋆) is closed in 𝑋 where ⋆ is the unique point of Spec ℂ.

Proof. Let 𝑥 ∈ 𝑋 be a closed point and an affine open neighbourhood of 𝑥 ∈ 𝑈 ≅
(Spec 𝐴, 𝐴) where 𝐴 is a finite ℂ-algebra. Thus the 𝑥 corresponds to a morphism Φ𝐴
between (Spec ℂ, ℂ̃) and (Spec 𝐴, 𝐴) by Corollary 2.22; we define Ψ𝑥 to be the composition
of

(Spec ℂ, ℂ̃) (Spec 𝐴, 𝐴) (𝑈, 𝒪𝑋 ∣𝑈) (𝑋, 𝒪𝑋) .Φ𝐴 ∼

Moreover, Ψ𝑥 does not dependent on the choice of affine neighbourhood Spec 𝐴: suppose
𝑥 ∈ Spec 𝐴 ∩ Spec 𝐵, then Spec 𝐴 ∩ Spec 𝐵 admits an open covering of spectra of finitely
generated ℂ-algebras by Proposition 2.13. Thus we can find a finitely generated ℂ-algebra
𝐶 such that Spec 𝐶 ⊆ Spec 𝐴 ∩ Spec 𝐵.

(Spec 𝐴, 𝐴)

(Spec ℂ, ℂ̃) (Spec 𝐶, 𝐶) (𝑋, 𝒪𝑋) ,

(Spec 𝐵, �̃�)

Φ𝐶

2ker 𝜙 is equal to (Spec 𝜙)(⋆) where ⋆ is the unique point of Spec ℂ
3for each 𝑐 ∈ ℂ, 𝜙(𝑐 ⋅ 1) = 𝑐
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where (_ ∶ Spec 𝐶 ↪ Spec 𝐴) ∘ Φ𝐶 is exactly Φ𝐴 and (_∶ Spec 𝐶 ↪ Spec 𝐵) ∘ Φ𝐶 is exactly
Φ𝐵 by Corollary 2.22; thus both composition in the commutative square above is Ψ𝑥, in
another word, Ψ𝑥 is independent from the choice of affine neighbourhood.

On the otherhand, if we are given a morphism Ψ ∶ (Spec ℂ, ℂ̃) → (Spec 𝐴, 𝐴), let us
denote 𝑥 to be the image of the unique point in Spec ℂ under Ψ; we want to show that 𝑥 is
a closed point. Since affine open set forms a basis, we only need to check that, for any affine
open (Spec 𝐴, 𝐴) ↪ (𝑋, 𝒪𝑋), 𝑥 is closed in Spec 𝐴. We consider the factorisation of Ψ:

(Spec ℂ, ℂ̃) (Spec 𝐴, 𝐴) (𝑋, 𝒪𝑋) ,Spec 𝜓

where 𝜓 is a ℂ-algebra homomorphism 𝐴 → ℂ such that Spec 𝜓 = Ψ|Spec 𝐴, hence by
Corollary 2.22, we have 𝑥 is closed in (Spec 𝐴, 𝐴). The two construction above is bijection
is verified as the following:

1. Let 𝑥 be a closed point, then it corresponds to Ψ𝑥, but the image of the unique point
in Spec ℂ under Ψ𝑥 is 𝑥;

2. if Φ is a morphism (Spec ℂ, ℂ̃) → 𝑋 and denote the unique image as 𝑥, Φ factors
through affine open neighbourhood of 𝑥 hence it is Ψ𝑥 because Ψ𝑥 does not dependent
on the choice of affine neightbourhood.

Proposition 2.24. Let Φ = (𝜙, 𝜙∗) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of schemes locally
of finite type over ℂ, then 𝜙 maps closed points of 𝑋 to closed points of 𝑌. Thus, we have
a well defined map Max {𝜙} ∶ Max {𝑋} → Max {𝑌}

Proof. Let 𝑥 be a closed point in 𝑋, then 𝑥 corresponds to a unique Ψ𝑥 = (𝜓𝑥, 𝜓∗
𝑥) ∶

(Spec ℂ, ℂ̃) → 𝑋 such that 𝜓𝑥(⋆) = 𝑥 where ⋆ is the unique point of Spec ℂ. The
composite Φ ∘ Ψ𝑥 is a morphism (Spec ℂ, ℂ̃) → 𝑌 thus Φ ∘ Ψ𝑥(⋆) is closed in 𝑌, since
Φ ∘ Ψ𝑥(⋆) = Φ(Ψ𝑥(⋆)) = Φ(𝑥), we conclude that Φ(𝑥) is a closed point in 𝑌.

When we talk about topology on Max {𝑋}, we mean the subspace topology induced by
the Zariski topology4.

Corollary 2.25. Let Φ ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be an open immersion, then Max {𝜙} is an
embedding.

Proof. Write Φ = (𝜙, 𝜙∗), note that 𝜙 is necessarily an embedding 𝑋 ↪ 𝑌 thus Max {𝜙}
being the restriction of 𝜙 must be embedding as well:

Max {𝑋} Max {𝑌}

𝑋 𝑌

Max{𝜙}

𝜙

where the vertical arrows and 𝜙 are embeddings so Max {𝜙} is embedding as well.

By the same argument and using Lemma 2.20, we can prove the following lemma

Lemma 2.26. Let 𝜃 ∶ 𝑅 → 𝑆 be a surjective ℂ-algebra homomorphism between finite ℂ-
algebras. MaxSpec 𝜃 is an embedding.

4Hopefully, I will be able to main the notation clearly: Max {𝑋} is Zariski and {𝑋}an is analytic
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Remark 2.27. Let 𝑋 be a scheme locally of finite type over ℂ and 𝒰 = {𝑈𝑖} be an open
cover of 𝑋. Then Max {𝑋} = ⋃𝑖 Max {𝑈𝑖}, so that Max {𝒰} = {Max {𝑈𝑖}} is a Zariski open
cover for Max {𝑋}

Lemma 2.28. Let 𝜃 ∶ 𝑅 → 𝑆 be a surjective ℂ-algebra homomorphism between finite
ℂ-algebras. Then the image of MaxSpec 𝜃 ∶ MaxSpec 𝑆 → MaxSpec 𝑅 is identified via
Proposition 2.21 with the set of ℂ-algebra homomorphisms 𝜓 ∶ 𝑅 → ℂ such that 𝜓(ker 𝜃) = 0.

Proof. Let 𝔪 ⊆ 𝑅 be a maximal ideal inside the image of MaxSpec 𝜃, i.e. there exists a
maximal ideal 𝔭 ⊆ 𝑆 such that 𝜃−1𝔭 = 𝔪. 𝔪 corresponds to the unique algebra homomor-
phism 𝜙𝔪 ∶ 𝑅 → ℂ whose kernel is 𝔪 and 𝔭 corresponds to the unique algebra homorphism
𝜓𝔭 ∶ 𝑆 → ℂ whose kernel is 𝔭. Thus 𝜃−1𝔭 = 𝔪 precesily when 𝜓𝔭 ∘ 𝜃 = 𝜙𝔪; and this happens
precisely when 𝜓𝔭 annaliates the kernel of 𝜃.

Remark 2.29. If we are only considering schemes (locally of) finite type over ℂ, any
morphism of ringed space over ℂ is automatically a morphism of locally ringed space over
ℂ.
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Chapter 3

Analytification of a scheme

3.1 Toplogical story
3.1.1 Affine scheme
Let 𝑆 be a finitely generated ℂ-algebra so that 𝑆 ≅ ℂ[𝑎1, … , 𝑎𝑛] for some 𝑎𝑖 ∈ 𝑆. Thus
there is a surjection 𝜃 ∶ ℂ[𝑋1, … , 𝑋𝑛] → 𝑆 defined by 𝑋𝑖 ↦ 𝑎𝑖. Thus, we have a morphism
(Spec 𝜃, ̃𝜃) of schemes of finite type over ℂ between (Spec 𝑆, ̃𝑆) to (Spec ℂ[𝑋1, … , 𝑋𝑛], ̃ℂ[𝑋1, … , 𝑋𝑛]).
By Proposition 2.24, we know that Spec 𝜃 gives us a continuous map

MaxSpec 𝜃 ∶ MaxSpec 𝑆 → MaxSpec ℂ[𝑋1, … , 𝑋𝑛],

since 𝜃 is surjective, MaxSpec 𝜃 is injective1.

Theorem 3.1. The set of closed points in Spec ℂ[𝑋1, … , 𝑋𝑛] corresponds bijectively to ℂ𝑛.

Proof. By Proposition 2.21, the set of closed points bijects to ℂ-algebra homomorphisms
ℂ[𝑋1, … , 𝑋𝑛] → ℂ. Thus we only need a bijection between ℂ-algebra homomorphism
ℂ[𝑋1, … , 𝑋𝑛] → ℂ and ℂ𝑛:

1. Give a point 𝑝 ∶= (𝑎1, … , 𝑎𝑛) ∈ ℂ𝑛, we define 𝜙𝑎 ∶ ℂ[𝑋1, … , 𝑋𝑛] → ℂ to be evaluation
at the point 𝑝.

2. Give a ℂ-algebra homomorphism 𝜙, we take the point to be (𝜙(𝑋1, … , 𝑋𝑛)).

Definition 3.2 (Analytification of topological spaces.). The complex topology of Spec 𝑆 is
the subspace topology of ℂ𝑛 via the injective map MaxSpec 𝜃. With the complex topology,
we denote MaxSpec 𝑆 as {(Spec 𝑆)}an and, if 𝜙 ∶ 𝑆 → 𝑆′ is a ℂ-algebra homorphism, we the
induced map between {Spec 𝑆′}an and {Spec 𝑆}an as {Spec 𝜙}an.

Note that by now we do not know that {(Spec 𝑆)}an is independent from the choice of
generators {𝑎1, … , 𝑎𝑛}, we will enventually prove that this is true, but let’s write {(Spec 𝑆)}an

𝑎𝑖
to stress the dependency.

Theorem 3.3. If 𝑆, as ℂ-algebras, is generated by both 𝑎1, … , 𝑎𝑛 and 𝑏1, … , 𝑏𝑚, we would
have as topological spaces {(Spec 𝑆)}an

𝑎𝑖
and {(Spec 𝑆)}an

𝑏𝑖
are homeomophic.

1being the restriction of the injective function Spec 𝜃
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Proof. Let us abbreviate the polynomial rings ℂ[𝑋1, … , 𝑋𝑛] as 𝑅 and ℂ[𝑌1, … , 𝑌𝑚] as 𝑅′,
then we have two surjective homomorphisms 𝜃 ∶ 𝑅 → 𝑆 and 𝜃′ ∶ 𝑅′ → 𝑆 such that 𝜃(𝑋𝑖) = 𝑎𝑖
and 𝜃′(𝑌𝑖) = 𝑏𝑖.

It is sufficient, by symmetry, to prove topology induced by generators 𝑏𝑖’s is finer than
that of 𝑎𝑖’s.

Since 𝑏𝑖’s generate 𝑆 and 𝑎𝑖’s are in 𝑆, we can find 𝑛 polynomials 𝑃𝑖 ∈ 𝑅′ = ℂ[𝑌1, … , 𝑌𝑚]
such that 𝑎𝑖 = 𝑃𝑖(𝑏1, … , 𝑏𝑚). Thus we can define 𝜙 ∶ 𝑅 → 𝑅′ by 𝑋𝑖 ↦ 𝑃𝑖(𝑌1, … , 𝑌𝑚) such
that 𝜃 = 𝜃′ ∘ 𝜙. Thus we have a commutative diagram (of plain functions)

{(Spec 𝑆)}an
𝑎𝑖

ℂ𝑛

{(Spec 𝑆)}an
𝑏𝑖

ℂ𝑚

MaxSpec 𝜃

=

MaxSpec 𝜃′

MaxSpec 𝜙

It is sufficient to prove that MaxSpec 𝜙 is continuous, then since MaxSpec 𝜃, MaxSpec 𝜃′

and MaxSpec 𝜙 are all continuous, the identity function {(Spec 𝑆)}an
𝑎𝑖

→ {(Spec 𝑆)}an
𝑏𝑖

is
continuous. Consider a point 𝑐 = (𝑐1, … , 𝑐𝑚) ∈ ℂ𝑚, then MaxSpec 𝜙(𝑐) is the point
eval𝑐 ∘ 𝜙(𝑋1, … , 𝑋𝑛), i.e. (𝑐1, … , 𝑐𝑚) ↦ (𝑃1(𝑐1, … , 𝑐𝑚), … , 𝑃𝑛(𝑐1, … , 𝑐𝑚)). This is a map
defined by polynomials, thus is continuous.

Now we have proven that the complex topology is independent of generators, we can
write {(Spec 𝑆)}an with a clear conscience.

Lemma 3.4. Since {(Spec 𝑆)}an, as a set, is just the set of closed points of Spec 𝑆, we have
a function 𝜆 ∶ {(Spec 𝑆)}an ↪ Spec 𝑆. 𝜆 is continuous where {(Spec 𝑆)}an is with complex
topology while Spec 𝑆 is with the Zaraski toplogy.

Proof. Let us choose a set of generators 𝑎1, … , 𝑎𝑛 and write 𝑅 ∶= ℂ[𝑋1, … , 𝑋𝑛], then we
would have the following commutative diagram:

{(Spec 𝑆)}an Spec 𝑆

{(Spec 𝑅)}an Spec 𝑅

ℂ𝑛

𝜆𝑆

restriction of Spec 𝜃 Spec 𝜃
𝜆𝑅

∼

,

where 𝜃 is the surjective ℂ-algebra homomorphism 𝑅 → 𝑆. The red arrows are continuous,
since they define the complex topology; Spec 𝜃 is continuous as well. To prove 𝜆𝑆 is con-
tinuous, we only need to prove the special case 𝜆𝑅 where 𝑅 = ℂ[𝑋1, … , 𝑋𝑛]. Since Spec 𝑅
has a basis of basic open set 𝐷(𝑓 ), we only need to check that 𝐷(𝑓 ) ∩ {(Spec 𝑅)}an is open
for any polynomial 𝑓 ∈ ℂ[𝑋1, … , 𝑋𝑛], indeed the intersection is equal to {𝑥 ∈ ℂ𝑛|𝑓 (𝑥) ≠ 0}
thus open23.

2𝔭 ∈ 𝐷(𝑓 ) if and only if 𝑓 ∉ 𝔭. Hence 𝔪 is in the intersection if and onlyv if 𝔪 is equal to the kernel of
evaluation map 𝜙𝑎 at some point 𝑎 and that 𝑓 is not in the kernel, in another word, 𝑓 (𝑎) ≠ 0.

3should this be a separate lemma?

9



Lemma 3.5. Let 𝑎1, … , 𝑎𝑛 be a set of generators of 𝑆 as ℂ-algebra and 𝑅 be ℂ[𝑋1, … , 𝑋𝑛]
and 𝜃 ∶ 𝑅 → 𝑆 be the surjective map defined by 𝜃(𝑋𝑖) = 𝑎𝑖. The image of Spec 𝜃 ∶ {Spec 𝑆}an →
{Spec 𝑅}an ≅ ℂ𝑛 is

𝑉(ker 𝜃) ∶= {(𝑥1, … , 𝑥𝑚)|𝑓𝑖(𝑥1, … , 𝑥𝑛) = 0} = {(𝑥1, … , 𝑥𝑚)|𝑝(𝑥1, … , 𝑥𝑛) = 0 for all 𝑝 ∈ ker 𝜃},

where 𝑓𝑖 generates ker 𝜃.

Proof. 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ image {Spec 𝜃}an if and only if 𝜓𝑥, evaluation at 𝑥, annilates the
kernel of 𝜃 by Lemma 2.28

Theorem 3.6. Let 𝑆 and 𝑆′ be two finitely generated ℂ-algebras and 𝜙 ∶ 𝑆 → 𝑆′ be a ℂ-
algebra homomorphism, the natural map {Spec 𝜙}an ∶ {Spec 𝑆′}an → {Spec 𝑆}an is continuous
(in the complex topology) and compatible with the inclusion map, i.e. the following diagram
is commutative:

{Spec 𝑆′}an {Spec 𝑆}an

Spec 𝑆′ Spec 𝑆

{Spec 𝜙}an

Spec 𝜙

Proof. The commutativity is free. Let us choose generators {𝑎1, … , 𝑎𝑛}’s for 𝑆 and {𝑏1, … , 𝑎𝑚}’s
for 𝑆′. Let us write the polynomial ring ℂ[𝑋1, … , 𝑋𝑛] as 𝑅 and ℂ[𝑌1, … , 𝑌𝑚] as 𝑅′. Then
we have two surjective ℂ-algebra homomorphisms 𝜃 ∶ 𝑅 → 𝑆 and 𝜃′ ∶ 𝑅′ → 𝑆′ as usual. Since
{𝑏𝑖} generates 𝑆′, we can find polynomials 𝑃𝑖 ∈ 𝑅′ such that 𝜙(𝑎𝑖) = 𝑃𝑖(𝑏1, … , 𝑏𝑚). Then
we can define a ℂ-algebra homomorphism 𝜓 ∶ 𝑅 → 𝑅′ by 𝑋𝑖 ↦ 𝑃𝑖(𝑌1, … , 𝑌𝑚) giving us the
following commutative diagrams:

ℂ𝑛 ℂ𝑚

𝑅 𝑅′ {Spec 𝑅}an {Spec 𝑅′}an

𝑆 𝑆′ {Spec 𝑆}an {Spec 𝑆′}an

𝜓

𝜃 𝜃′

∼
{Spec 𝜓}an

∼

𝜙
{Spec 𝜃}an Spec 𝜃′

{Spec 𝜙}an

The red arrows are continuous because they define the complex topology and {Spec 𝜓}an is
continuous because it is defined by polynomial 𝜓. Thus {Spec 𝜙}an is continuous.

Corollary 3.7. If 𝑆 → 𝑆′ is an isomorphism of finite ℂ-algebras, then {Spec 𝑆}an and
{Spec 𝑆′}an are homeomorphic.

Lemma 3.8. If 𝜙 ∶ 𝑆 → 𝑆′ is a surjective ℂ-algebra homomorphism between two finite
ℂ-algebras, then {Spec 𝜙}an ∶ {Spec 𝑆′}an → {Spec 𝑆}an is an embedding.

Proof. Let {𝑎1, … , 𝑎𝑛}′𝑠 be generators of 𝑆 and 𝑅 be the polynomial ring ℂ[𝑋1, … , 𝑋𝑛].
Then we have 𝜃 ∶ 𝑅 → 𝑆 such that 𝜃(𝑋𝑖) = 𝑎𝑖. The composition 𝑅 𝜃→ 𝑆 𝜙→ 𝑆′ is a surjection
as well. Thus by taking {Spec(−)}an operation, we get

{Spec 𝑆′}an {Spec 𝑆}an {Spec 𝑅}an ℂ𝑛.{Spec 𝜙}an {Spec 𝜃}an
∼
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The whole composition is embedding because of independence of generators and {Spec 𝜃}an

is an embedding as well, thus {Spec 𝜙}an is an embedding as well.

Lemma 3.9. Let us write ℂ[𝑋1, … , 𝑋𝑛] as 𝑅 and let 𝑓 ∈ 𝑅 be a polynomial, then the
localization map 𝛼 ∶ 𝑅 → 𝑅𝑓 induces an embedding {Spec 𝑅𝑓 }

an
↪ {Spec 𝑅}an.

Proof. TBD

More generally, we have a corresponding lemma for arbitrary finite ℂ-algebras.

Lemma 3.10. If 𝑆 is a finite ℂ-algebra and 𝑓 ∈ 𝑆, then the localization map 𝛼 ∶ 𝑆 → 𝑆𝑓

induces an embedding {Spec 𝑆𝑓 }
an

↪ {Spec 𝑆}an. In fact {Spec 𝑆𝑓 }
an

is identified as the
subset 𝐷(𝑓 ) ∩ Spec 𝑆 where 𝐷(𝑓 ) is the basic open set in Spec 𝑆.

Proof. TBD

3.1.2 Arbitrary scheme
Definition 3.11 (Complex Topology). Let (𝑋, 𝒪𝑋) be a scheme locally of finite type over
ℂ, let ℐ be the collection of open immersions (Spec 𝑅, �̃�) → 𝑋 where 𝑅 is some finite ℂ-
algebra. Then the complex topology on the set of closed points max 𝑋 is defined as the weak
topology with respect to {{𝜙}an|(𝜙, 𝜙∗) ∈ ℐ} where {𝜙}an is the restriction of 𝜙 to the subset
of closed points. When we talk about complex toplogy, we write max 𝑋 as {𝑋}an.

Lemma 3.12. Let (𝑋, 𝒪𝑋) be a scheme locally of finite type over ℂ, 𝑅 be a finite ℂ-
algebra and Ψ = (𝜓, 𝜓∗) ∶ (Spec 𝑅, �̃�) → (𝑋, 𝒪𝑋) be an open immersion. Then {𝜓}an is an
embedding.

Proof. TBD

Lemma 3.13. Let 𝜆𝑋 ∶ {𝑋}an ↪ 𝑋 be the inclusion map, then 𝜆𝑋 is continuous.

Proof. Let 𝑥 ∈ 𝑋 and 𝑈 ≅ Spec 𝐴 be an open affine neighbourhood of 𝑥. Then we have the
following commutative diagram:

{Spec 𝐴}an {𝑋}an

Spec 𝐴 𝑋.

𝜄1

𝜆𝑋
𝜄2

The red arrow is continuous by Lemma 3.4; 𝜄1 is continuous by Lemma 3.12; 𝜄2 is an open
embedding by hypothesis. Thus 𝜆𝑋 is continuous as well.

Lemma 3.14. Let Φ = (𝜙, 𝜙∗) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of schemes locally of
finite type over ℂ, then {𝜙}an ∶ {𝑋}an → {𝑌}an is continuous.

Proof. Let 𝑥 ∈ 𝑋 and 𝑈 ≅ Spec 𝐴 ⊆ 𝑋 and 𝑉 ≅ Spec 𝐵 ⊆ 𝑌 such that 𝜙𝑈 ⊆ 𝑉 be affine
neighbourhoods around 𝑥 and 𝜙(𝑥)4. Then Φ|𝑈 ∶ (Spec 𝐴, 𝐴) → (Spec 𝐵, �̃�) is induced by a
ℂ-algebra homomorphism 𝛼 ∶ 𝐵 → 𝐴, thus we have the following two commutative squares:

4This is possible by definition of being locally finite.
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(Spec 𝐴, 𝐴) (Spec 𝐵, �̃�) {Spec 𝐴}an {Spec 𝐵}an

(𝑋, 𝒪𝑋) (𝑌, 𝒪𝑌) {𝑋}an {𝑌}an.

(Spec 𝛼, ̃𝛼) {Spec 𝛼}an

Φ {𝜙}an

where the red arrows are continuous by Lemma 3.13 and {Spec 𝛼}an is continuous by Theo-
rem 3.6. Thus {𝜙}an is continuous as well.

Corollary 3.15. Let Φ ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be an open immersion of schemes locally of
finite type over ℂ, then {𝜙}an is an embedding of {𝑋}an into {𝑌}an.
Proof. TBD

Here are two easy consequences:
Corollary 3.16. Given two morphisms among schemes locally of finite type over ℂ

(𝑋, 𝒪𝑋) (𝑌, 𝒪𝑌) (𝑍, 𝒪𝑍),(𝜙,𝜙∗) (𝜓,𝜓∗)

we have {𝜓 ∘ 𝜙}an = {𝜓}an ∘ {𝜙}an

Proof. Restriction of composition is composition of restriction.

Corollary 3.17. Let Φ = (𝜙, 𝜙∗) ∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) be a morphism of schemes locally
of finite type over ℂ, we have

{𝑋}an {𝑌}an

𝑋 𝑌

{𝜙}an

𝜙

3.2 Sheaf side
In previous section, we have showed that for any scheme (𝑋, 𝒪𝑋) locally of finite type over
ℂ, we can make a topological space {𝑋}an with the complex topology. In this section, we
aim to make a sheaf {𝒪𝑋}an on {𝑋}an. We will consider the affine cases (Spec 𝑆, ̃𝑆) where 𝑆
is a finite ℂ-algebra by choosing generators; then we prove that the construction does not
dependent on the choice of generators; then we glue everything together.

3.2.1 Affine schemes
Let 𝑆 be a finite ℂ-algebra, we choose generators 𝑎1, … , 𝑎𝑛 and write ℂ[𝑋1, … , 𝑋𝑛] as 𝑅.
Thus we have a surjective ℂ-algebra homomorphism 𝜃 ∶ 𝑅 → 𝑆 such that 𝜃(𝑋𝑖) = 𝑎𝑖. Then
ker 𝜃 is finitely generated as well, say by 𝑓1, … , 𝑓𝑚. Note that the image of {Spec 𝜃}an ∶
{Spec 𝑆}an → {Spec ℂ[𝑋1, … , 𝑋𝑛]}an ≅ ℂ𝑛, which we often just write as {Spec 𝜃}an as well,
is in bijection with 𝑉(ker 𝜃) ∶= {𝑥 ∈ ℂ𝑛 ∣ 𝑓𝑖(𝑥) = 0 for all 𝑖}5; hence is closed in ℂ𝑛 because
its the intersection of inverse images of the singleton set {0}.

We do constructions using 𝑓1, … , 𝑓𝑚, so everything depends on the choice of 𝑎1, … , 𝑎𝑛. In
this section, we also denote the sheaf of holomorphic function as ℋℴ𝓁 where Γ (ℋℴ𝓁, 𝑈) ∶=
{𝑓 ∶ 𝑈 → ℂ|𝑓 is holomorphic} for any open subset 𝑈 ⊆ ℂ𝑛.

We use a specialized basis of topology on ℂ𝑛.
5by Lemma 2.28
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Definition 3.18 (Generalized polydiscs). A generalized polydisc

Δ(𝑔1, … , 𝑔𝑙; 𝑤1, … , 𝑤𝑙; 𝑟1, … , 𝑟𝑙)

is the set {𝑥 ∈ ℂ𝑛| ∣𝑔𝑖(𝑥) − 𝑤𝑖∣ < 𝑟𝑖 for all 𝑖 = 1, … , 𝑙} where each 𝑔𝑖 ∈ ℂ[𝑋1 … , 𝑋𝑛] is a
polynomial of 𝑛 variables, 𝑤 ∶= (𝑤1, … , 𝑤𝑛) ∈ ℂ𝑙 is a point and 𝑟 ∶= (𝑟1, … , 𝑟𝑙) ∈ ℝ𝑙

≥0 are
all non-negative. We call 𝑤 the center of the polydisc and 𝑟 the polyradius6.

Remark 3.19. Traditionally, a polydisc Δ(𝑤1, … , 𝑤𝑙; 𝑟1, … , 𝑟𝑙) ∶= {𝑥 ∈ ℂ𝑙| ∣𝑤𝑖 − 𝑟𝑖∣ < 𝑟𝑖}}
is the special case Δ(𝑋1, … , 𝑋𝑛; 𝑤1, … , 𝑤𝑛; 𝑟1, … , 𝑟𝑛). For a generalized polydisc Δ(𝑔; 𝑤; 𝑟),
we have a map 𝑔 ∶ ℂ𝑛 → ℂ𝑙 defined by 𝑥 ↦ (𝑔1(𝑥), … , 𝑔𝑙(𝑥)). Note that Δ(𝑔; 𝑤; 𝑟) is equal
to 𝑔−1Δ(𝑤; 𝑟), the inverse image of the usual polydisc. So generalized polydiscs are exactly
the inverse image of usual polydiscs by some polynomial map.

Lemma 3.20 (Basis of generalized polydiscs). All generalized polydiscs form a topological
basis of ℂ𝑛.

Proof. • Every open set is a union of generalized polydiscs. Just take small polyradius
and 𝑔𝑖 = 𝑋𝑖.

• Intersection of two generalized polydiscs is a generalized polydisc. Consider Δ(𝑔; 𝑤; 𝑟)
and Δ(𝑔′; 𝑤′; 𝑟′). The idea is the following: Δ(𝑔; 𝑤; 𝑟) is 𝑔−1Δ(𝑤; 𝑟) and Δ(𝑔′; 𝑤′; 𝑟′) =
𝑔′−1Δ(𝑔′; 𝑤; 𝑟′)), and (𝑔, 𝑔′) ∶ ℂ𝑛 → ℂ𝑙 × ℂ𝑙′ ≅ ℂ𝑙+𝑙′ is a polynomial map, call it 𝐺.
Since Δ(𝑤; 𝑟) × Δ(𝑤′; 𝑟′) is a usual polydisc, its inverse image under 𝐺 is a generalized
polydiscs and is equal to the intersection of the original generalized polydiscs.

The following terminology is nonstandard.

Definition 3.21 (Preanalytification of sheaves.). We have a sheaf 𝒪pre on ℂ𝑛 is defined to
be the cokernel sheaf of the following exact sequence:

ℋℴ𝓁⊕𝑚 ℋℴ𝓁 𝒪pre 0,

where the first arrow, on 𝑈, is given by (𝑎1, … , 𝑎𝑚) ↦ 𝑓1|𝑈 ⋅ 𝑎1 + ⋯ + 𝑓𝑚|𝑈 ⋅ 𝑎𝑚 where
𝑎𝑖 ∈ Γ (ℋℴ𝓁, 𝑈) and 𝑓𝑖 generates ker 𝜃

Lemma 3.22. On generalized polydiscs Δ1 ⊆ Δ2, Γ (𝒪pre, Δ1) is isomorphic to

Γ (ℋℴ𝓁, Δ1)/ker 𝜃 ⋅ Γ (ℋℴ𝓁, Δ1)

and the restriction map Γ (𝒪pre, Δ2) → Γ (𝒪pre, Δ1) is the restriction map

res ∶ Γ (ℋℴ𝓁, Δ2)/ker 𝜃 ⋅ Γ (ℋℴ𝓁, Δ2) → Γ (ℋℴ𝓁, Δ1)/ker 𝜃 ⋅ Γ (ℋℴ𝓁, Δ1)

defined by [𝑓 ] ↦ [𝑓 ∣𝑈].

Proof. This lemma is going to be hard. Uses coherent analytic sheaves, Cartan’s Theorem,
Stein manifold, etc. The author of [2, page 108] tells us to look at [1, page 136, definition
2; page 243, theorem 2].

6Different polydiscs can have different 𝑙
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Lemma 3.23. Let 𝑥 be a point not in {Spec 𝑆}an, in another word, 𝑥 ∈ ℂ𝑛 − {Spec 𝑆}an.
There is an open subset 𝑥 ∈ 𝑈 ⊆ ℂ𝑛 such that for any generalized polydiscs Δ ⊆ 𝑈, we have
Γ (𝒪pre, Δ) = 0.
Proof. By Lemma 2.28, 𝑥 is not in the image of {Spec 𝑆}an precisely when at least one
of the 𝑓𝑖(𝑥) ≠ 0. Say it’s the first one. Then, there is some open neighbourhood 𝑈
around 𝑥 such that 𝑓1 ∣𝑈 is nowhere zero, i.e. invertible. Thus for any generalized poly-
disc Δ ⊆ 𝑈, we have that the ideal ker 𝜃 ⋅ Γ (ℋℴ𝓁, 𝑈) is everything so that Γ (𝒪𝑝𝑟𝑒, Δ) ≅
Γ (ℋℴ𝓁, Δ)/ker 𝜃 ⋅ Γ (ℋℴ𝓁, Δ) is trivial.

Corollary 3.24 (𝒪pre is supported in {Spec 𝑆}an). Let 𝑉 ⊆ ℂ𝑛 − {Spec 𝑆}an be an open set
in ℂ𝑛, then the sections of 𝒪pre on 𝑉 is trivial.
Proof. Let 𝜎 ∈ Γ (𝒪pre, 𝑉), we want to show that 𝜎(𝑥) = 0 for all 𝑥 ∈ 𝑉. By Lemma 3.23,
there exists some open neightbourhood 𝑥 ∈ 𝑈 ⊆ 𝑉7 such that sections of 𝒪pre on any
generalized polydiscs contained in 𝑈 is trivial. Thus we can cover 𝑉 by a family of generalized
polydiscs Δ𝑖 such that 𝜎 ∣Δ𝑖

are all zero; therefore by sheaf axioms, 𝜎 is zero.

Corollary 3.25. Let 𝑉 ⊆ ℂ𝑛 be an open subset then we have an isomorphism

Γ (𝒪pre, 𝑉 ∪ (ℂ𝑛 − {Spec 𝑆}an)) ≅ Γ (𝒪pre, 𝑉)

Proof. Write 𝐴 ∶= ℂ𝑛 − {Spec 𝑆}an, we need to prove the restriction map from 𝑉 ∪ 𝐴 to 𝑉
is both injective and surjective.

• Injectivity: suppose a section 𝜎 ∈ Γ (𝒪pre, 𝑉 ∪ 𝐴) is in the kernel of the restriction
map, in another word, 𝜎 ∣𝑉 is zero. Then if we cover 𝑉 ∪ 𝐴 by 𝑉 and 𝐴, we would
know that 𝜎 ∣𝐴 is zero as well8, so by sheaf axiom, 𝜎 is zero.

• Surjectivity: let 𝜎 be a section in Γ (𝒪pre, 𝑉), then we can glue 𝜎 and 0 ∈ Γ (𝒪pre, 𝐴)
because 𝜎 ∣𝑉∩𝐴 must be zero, since Γ (𝒪pre, 𝑉 ∩ 𝐴) is trivial by Corollary 3.24.

Definition 3.26 (Analytification of sheaf). The analytification { ̃𝑆}an
of ̃𝑆 is a presheaf on

{Spec 𝑆}an defined by the following:

• For any open set 𝑈 ⊆ {Spec 𝑆}an, we define the sections Γ ({ ̃𝑆}an, 𝑈) to be

Γ (𝒪pre, 𝑈 ∪ (ℂ𝑛 − {Spec 𝑆}an)).

• For any open sets 𝑈 ⊆ 𝑉 ⊆ {Spec 𝑆}an, we define the restriction map of { ̃𝑆}an
from 𝑉 to

𝑈 is the restriction map of 𝒪pre from 𝑉 ∪(ℂ𝑛 − {Spec 𝑆}an) to 𝑈∪(ℂ𝑛 − {Spec 𝑆}an).
This defines a presheaf, the satisfaction of sheaf axioms are essentially from that of 𝒪pre.
Remark 3.27 (Independence of the generators 𝑓1, … , 𝑓𝑚). Though the definition of 𝒪pre

explicity uses 𝑓𝑖’s, we see that on the basis of generalized polydiscs, the sections on a general-
ized polydisc is Γ (ℋℴ𝓁, Δ)/ker 𝜃 ⋅ Γ (ℋℴ𝓁, Δ) which does not mention any generators. Since
two sheaves are isomorphic if their sections on a basis are isomorphic, we must conclude
that 𝒪pre is independent of the choice of 𝑓1, … , 𝑓𝑚 as well. But we don’t know yet if the
construction is independent from the choice of 𝑎1, … , 𝑎𝑚.

7if 𝑈 is not a subset of 𝑉, then use 𝑈 ∩ 𝑉
8by Corollary 3.24 and that 𝐴 is open
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