GAGA

Jujian Zhang

April 19, 2024

Chapter 1

Commutative Algebra

In this chapter, we collect some results of commutative algebra.

Theorem 1.1 (Hilbert's Nullstellensatz). Let k be a field and A be a finitely generated k-algebra. Then for every prime ideal \mathfrak{p} of A,

$$\mathfrak{p} = \bigcap_{\mathfrak{p} \le \mathfrak{m} \ is \ maximal} \mathfrak{m}.$$

If \mathfrak{m} is a maximal ideal of A, then $k \hookrightarrow A/\mathfrak{m}$ is a finite field extension.

Proof.

Corollary 1.2. Let k be an algebraically closed filed and A a finitely generated k-algebra, then A/\mathfrak{m} is isomorphic to k.

Proof. The field extension A/\mathfrak{m} over k is finite hence algebraic. Since k is algebraically closed, A/\mathfrak{m} is isomorphic to k.

Corollary 1.3. Let k be an algebraically closed field and A a finitely generated k-algebras, then each maximal ideals \mathfrak{m} A is the kernel of a unique algebra homomorphism $\phi_{\mathfrak{m}} : A \to k$

Proof. Existence: the kernel of $A \xrightarrow{\pi} A/\mathfrak{m} \xrightarrow{\sim} k$ is exactly \mathfrak{m} .

Uniqueness: assume ϕ and ψ are two \mathbb{C} -algebra homomorphism such that $\mathfrak{m} = \ker \phi = \ker \psi$. Let $\rho : \mathbb{C} \to R$ be the structure map of R. For any $r \in R$, we claim that there exists some $x \in \mathfrak{m}$ and $\lambda \in \mathbb{C}$, such that $r = x + \rho(\lambda)$. Indeed, we have that $r = (r - \rho(\phi(r))) + \rho(\phi(r))$, and $r - \rho(\phi(r))$ is in the kernel of ϕ . Thus for every $r = m + \rho(\lambda)$, we have $\phi(r) = \phi(\rho(\lambda)) = \psi(\rho(\lambda)) = \psi(r)$.

Chapter 2

Schemes of finite type over $\mathbb C$

2.1 Some general scheme theory

Before we can define our main object of interest, schemes of finite type over \mathbb{C} , we need to introduce some preliminary notions.

We already have the following in mathlib4 thanks to Andrew Yang:

Definition 2.1 (Local property of ring homomorphisms). Let P be a property of ring homomorphisms: we say the property P is local if

- 1. if P holds for $\phi : A \to B$, then P holds for $\phi_S : S^{-1}A \to \langle f(S) \rangle^{-1} B$ for any submonoid $S \subseteq A$.
- 2. Let $\phi : A \to B$ be a ring homomorphism, if P holds for $A \xrightarrow{\phi} B \to B_{f_i}$ for some $\{f_i\} \subseteq B$ such that $\langle f_i \rangle = B$, then P holds for ϕ .
- 3. Let $\phi : A \to B$ and $\psi : B \to C$ be two ring homomorphisms, if P holds for ϕ and ψ , then P holds for $\psi \circ \phi$.
- 4. P holds for $A \to A_f$ for all $f \in A$.

Proposition 2.2. The property "finite type" of ring homomorphisms is local in the sense of Definition 2.1.

Definition 2.3. If P is a property of ring homomorphisms then the property affine locally P of scheme morphism $(\phi, \phi^*) : (X, O_X) \to (Y, O_Y)$ holds if and only if P holds for all ring homomorphism $\Gamma(U, O_X) \to \Gamma(V, O_Y)$ for all affine subsets $U \subseteq X$ and $V \subseteq Y$ such that $\phi(U) \leq V$.

Definition 2.4 (Morphisms locally of finite type [3, 01T0]). Let $\Phi : (X, O_X) \to (Y, O_Y) := (\phi, \phi^*)$ be a morphism of schemes. We say

- 1. Φ is locally of finite type if for any affine open $V \subseteq Y$ and affine open $U \subseteq X$ such that $\phi(U) \subseteq V$, we have the induced map $\Gamma(U, O_X) \to \Gamma(V, O_V)$ is a ring map of finite type. In another word, Φ is affine locally a ring homomorphism of finite type.
- 2. Φ is of finite type if it is locally of finite type and ϕ is quasi-compact.

Proposition 2.5. Let $\Phi : (X, O_X) \to (Y, O_Y)$ be an open immersion between schemes, then Φ is locally of finite type.

Proposition 2.6. Let $\Phi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of schemes and $\mathcal{U} = \{U_i\}$ be an open covering of X, then affine locally Φ is locally of finite type if and only if $\Phi|_{U_i}$ is a morphism locally of finite type.

Proposition 2.7. Let $\Phi : (X, O_X) \to (Y, O_Y)$ be a morphism of schemes and $\mathcal{U} = \{U_i\}$ be an affine open covering of Y. Consider the pullback cover $\mathcal{V} = \{V_i\}$ of X, and if for each i, there is an affine open cover $\mathcal{W}_i = \{W_{i,j}\}$ for $V_i \subseteq X$. Then Φ is locally of finite type if and only if, for each i and j, the ring map $\Gamma(W_{i,j}, O_X) \to \Gamma(\mathcal{U}_i, O_Y)$ is of finite type.

Proposition 2.8. Composition of morphisms locally of finite type is locally of finite type.

2.2 Basic definitions and properties

Definition 2.9 (Schemes locally of finite type over \mathbb{C}). A scheme (X, O_X) is locally of finite type over \mathbb{C} if (X, O_X) is a scheme over \mathbb{C} and the structure morphism $(X, O_X) \rightarrow$ (Spec $\mathbb{C}, \widetilde{\mathbb{C}}$) is a morphism locally of finite type.

Definition 2.10 (Schemes of finite type over \mathbb{C}). A scheme (X, \mathcal{O}_X) is of finite type over \mathbb{C} if (X, \mathcal{O}_X) is locally of finite type over \mathbb{C} and the structure morphism is quasicompact.

Let us unpack the Definition 2.9 a little:

Definition 2.11 (Affine open covering of spectra of finitely generated \mathbb{C} -algebras). An affine open covering of spectra of finitely generated \mathbb{C} -algebra for a scheme (X, O_X) over \mathbb{C} is the following data:

- 1. indexing set: I;
- 2. a family of finitely generated algebras: $R: I \to \mathsf{FGCAlg}_{\mathbb{C}}$;
- 3. a family of open immersions: for each $i \in I$, $\iota_i : (\operatorname{Spec} R_i, \widetilde{R_i}) \to (X, O_X);$
- 4. covering: $c: X \to I$ such that for each $x \in X$, $c_x \in \text{range}(\iota_i)$.

Lemma 2.12. A scheme (X, O_X) is locally of finite type over \mathbb{C} if it is a scheme over \mathbb{C} and it admits an affine open cover of spectra of finitely generated \mathbb{C} -algebras.

Proof. This is unpacking Definition 2.9

Proposition 2.13. Let (X, O_X) be a scheme locally of finite type over \mathbb{C} , let $U \subseteq X$ be an open subset, then $(U, O_X |_U)$ is a scheme locally of finite type over \mathbb{C} .

Proof. By Proposition 2.5 and Proposition 2.8, open immersions are locally of finite type and composition of morphisms locally of finite type is again locally of finite type, so

$$(U, \mathcal{O}_X|_U) \hookrightarrow (X, \mathcal{O}_X) \to (\operatorname{Spec} \mathbb{C}, \widetilde{\mathbb{C}})$$

is a morphism locally of finite type as well.

Proposition 2.14. If (X, O_X) is a scheme locally of finite type over \mathbb{C} , and $U = (\text{Spec } A, \widetilde{A})$ is an open affine subscheme of (X, O_X) , then $A \cong \Gamma(U, O_X)$ is a finitely generated \mathbb{C} -algebra as well.

Proof. Consider the only open affine cover {Spec \mathbb{C} } of Spec \mathbb{C} , its pullback cover is { $X_{\mathbb{C}} := X \times_{\text{Spec }\mathbb{C}} \text{Spec }\mathbb{C}$ } where $X_{\mathbb{C}}$ can be covered by $U_i \times_{\text{Spec }\mathbb{C}} \text{Spec }\mathbb{C}$ where U_i runs over the collection of all affine open sets. Then the conclusion follows from Proposition 2.7.

Lemma 2.15. If $U \subseteq \text{Spec } A$ is an open subset where A is a finite \mathbb{C} -algebra, then U admits a finite covering of $D(f_1), \ldots, D(f_n)$ where D(x) is the basic open around $x \in A$.

Proof. Since U is open, its complement $U^{\mathbb{C}}$ is of the form V(I) for some ideal I. Since A is a finite \mathbb{C} -algebra, I is the span of $\{f_1, \ldots, f_n\}$ for some $f_i \in A$. Thus V(I) is $\bigcap_i V(f_i \cdot R)$ hence U is $\bigcup_i D(f_i)$.

Lemma 2.16. If (X, O_X) is a scheme of finite type over \mathbb{C} and $V \subseteq X$ is an open subset, then V is quasi-compact.

Proof. Since (X, O_X) is of finite type, it has a *finite* affine covering $U_i = \{U_1, \ldots, U_n\}$. It is sufficient to show that every open cover of $U_i \cap V$ has a finite subcover¹. In another word, we only need to show if $(X, O_X) \cong (\operatorname{Spec} A, \widetilde{A})$ is affine and V is an open subset of X, then V is quasicompact. Since V is a *finite* union of $D(f_1), \ldots, D(f_n)$ for some f_i 's in A, we only need to show that D(f) is quasicompact. Since D(f) is affine, it is quasicompact. \Box

Corollary 2.17 (restriction of scheme of finite type over \mathbb{C}). Let (X, O_X) be a scheme of finite type over \mathbb{C} and $U \subseteq X$ be open, then the restriction $(U, O_X|_U)$ is a scheme of finite type over \mathbb{C} as well.

Proposition 2.18. Let $(\operatorname{Spec} A, \widetilde{A})$ and $(\operatorname{Spec} B, \widetilde{B})$ be two affine finite schemes over \mathbb{C} . Then any morphism $\Phi : (\operatorname{Spec} A, \widetilde{A}) \to (\operatorname{Spec} B, \widetilde{B})$ is of the form (ϕ, ϕ^*) where $\phi : B \to A$ is a \mathbb{C} -algebra homomorphism.

Proof. We have a ring homomorphism ϕ , just need to check it commutes with algebra map.

Maybe we should construct the following and recover the previous lemma as a corollary:

Proposition 2.19. The category of affine scheme over \mathbb{C} is antiquivalent to commutative \mathbb{C} -algebras. The category of affine finite scheme over \mathbb{C} is antiequivalent to finitely generated commutative \mathbb{C} -algebras.

$$\mathsf{ASch}^{\mathsf{op}}_{\mathbb{C}} \cong \mathsf{CAlg}_{\mathbb{C}}$$

$$\operatorname{AFiniteSch}^{\operatorname{op}}_{\mathbb{C}} \cong \operatorname{FGCAlg}_{\mathbb{C}}$$

Lemma 2.20. Let $\phi : R \to S$ be a surjective \mathbb{C} -algebra homomorphisms between finite \mathbb{C} -algebras, then Spec ϕ : Spec $S \to$ Spec R is an embedding.

Proof. Spec ϕ is injective since ϕ is surjective. We need to check that every open set in Spec *S* is an inverse image of some open set in Spec *R*. Since Spec *S* has a basis of basic open sets D(f)'s where $f \in S$, we only need to check D(f) is the inverse image of some open set in Spec *R*. Since θ is surjective, we know that $\theta(r) = f$ for some $r \in R$. Then $D(f) \subseteq$ Spec *S* is the inverse image of $D(r) \subseteq$ Spec *R*.

¹finite union of quasicompact set is again quasicompact

2.3 Closed points

In this section, we focus on the subset set of closed points of a scheme locally of finite type over \mathbb{C} , preparing for the complex topology. Let us fix some notation first: for an arbitrary scheme (X, O_X) , we denote Max $\{X\}$ to be the set of all closed points of X and MaxSpec R to be the set of all maximal ideals of a ring R. Note that MaxSpec R is exactly Max $\{\text{Spec }R\}$ and we use both interchangeably.

Proposition 2.21. Let $(\operatorname{Spec} A, \widetilde{A})$ be an affine finite scheme over \mathbb{C} . We have that the set of closed points MaxSpec A are in bijection to $\operatorname{Hom}_{\operatorname{CAlg}_{\mathbb{C}}}(A, \mathbb{C})$

Proof. From Corollary 1.3, we know that for each closed point \mathfrak{m} , i.e. a maximal ideal, there is a unique $\phi_{\mathfrak{m}} : A \to \mathbb{C}$ whose kernel is \mathfrak{m} . Conversely, for any $\phi : A \to \mathbb{C}$, ker ϕ is certainly a prime ideal². Since ϕ is surjective³, its kernel is maximal.

It remains to show that $\mathfrak{m} \mapsto \phi_{\mathfrak{m}}$ and $\phi \mapsto \ker \phi$ are inverse to each other. But this follows from the uniqueness from Corollary 1.3: Let \mathfrak{m} be a maximal ideal, then the ker $\phi_{\mathfrak{m}}$ is exactly \mathfrak{m} by definition of $\phi_{\mathfrak{m}}$; on the other hand, if ϕ is an algebra homomorphism then ϕ and $\phi_{\ker \phi}$ are both algebra homomorphism that has kernel ker ϕ , hence must be equal. \Box

Corollary 2.22. Let $(\operatorname{Spec} A, \widetilde{A})$ be an affine finite scheme over \mathbb{C} . We have that the MaxSpec A is in bijection with $\operatorname{Hom}_{\operatorname{Sch}/\mathbb{C}}((\operatorname{Spec} \mathbb{C}, \widetilde{\mathbb{C}}), (\operatorname{Spec} A, \widetilde{A}))$

Proposition 2.23. If (X, O_X) is a scheme locally of finite type over \mathbb{C} , then Max {X} is in bijection with $X(\mathbb{C}) := \operatorname{Hom}_{\mathsf{Sch}/\mathbb{C}} ((\operatorname{Spec} \mathbb{C}, \widetilde{\mathbb{C}}), (X, O_X))$, such that every closed point p, is the image of \star of a unique morphism Φ_p ; and for each morphism $\Phi : (\operatorname{Spec} \mathbb{C}, \widetilde{\mathbb{C}}) \to (X, O_X), \Phi(\star)$ is closed in X where \star is the unique point of $\operatorname{Spec} \mathbb{C}$.

Proof. Let $x \in X$ be a closed point and an affine open neighbourhood of $x \in U \cong$ (Spec A, \widetilde{A}) where A is a finite \mathbb{C} -algebra. Thus the x corresponds to a morphism Φ_A between (Spec $\mathbb{C}, \widetilde{\mathbb{C}}$) and (Spec A, \widetilde{A}) by Corollary 2.22; we define Ψ_x to be the composition of

$$(\operatorname{Spec} \mathbb{C}, \widetilde{\mathbb{C}}) \xrightarrow{\Phi_A} (\operatorname{Spec} A, \widetilde{A}) \xrightarrow{\sim} (U, O_X|_U) \hookrightarrow (X, O_X).$$

Moreover, Ψ_x does not dependent on the choice of affine neighbourhood Spec A: suppose $x \in \text{Spec } A \cap \text{Spec } B$, then $\text{Spec } A \cap \text{Spec } B$ admits an open covering of spectra of finitely generated \mathbb{C} -algebras by Proposition 2.13. Thus we can find a finitely generated \mathbb{C} -algebra C such that $\text{Spec } C \subseteq \text{Spec } A \cap \text{Spec } B$.

 $^2\mathrm{ker}\,\phi$ is equal to $(\mathrm{Spec}\,\phi)(\star)$ where \star is the unique point of $\mathrm{Spec}\,\mathbb{C}$ $^3\mathrm{for}$ each $c\in\mathbb{C},\,\phi(c\cdot 1)=c$

where $(_: \operatorname{Spec} C \hookrightarrow \operatorname{Spec} A) \circ \Phi_C$ is exactly Φ_A and $(_: \operatorname{Spec} C \hookrightarrow \operatorname{Spec} B) \circ \Phi_C$ is exactly Φ_B by Corollary 2.22; thus both composition in the commutative square above is Ψ_x , in another word, Ψ_x is independent from the choice of affine neighbourhood.

On the other hand, if we are given a morphism $\Psi : (\operatorname{Spec} \mathbb{C}, \widetilde{\mathbb{C}}) \to (\operatorname{Spec} A, \widetilde{A})$, let us denote x to be the image of the unique point in $\operatorname{Spec} \mathbb{C}$ under Ψ ; we want to show that x is a closed point. Since affine open set forms a basis, we only need to check that, for any affine open $(\operatorname{Spec} A, \widetilde{A}) \hookrightarrow (X, O_X)$, x is closed in $\operatorname{Spec} A$. We consider the factorisation of Ψ :

$$(\operatorname{Spec} \mathbb{C}, \widetilde{\mathbb{C}}) \xrightarrow{\operatorname{Spec} \psi} (\operatorname{Spec} A, \widetilde{A}) \longleftrightarrow (X, O_X),$$

where ψ is a \mathbb{C} -algebra homomorphism $A \to \mathbb{C}$ such that $\operatorname{Spec} \psi = \Psi|_{\operatorname{Spec} A}$, hence by Corollary 2.22, we have x is closed in $(\operatorname{Spec} A, \widetilde{A})$. The two construction above is bijection is verified as the following:

- 1. Let x be a closed point, then it corresponds to Ψ_x , but the image of the unique point in Spec \mathbb{C} under Ψ_x is x;
- 2. if Φ is a morphism (Spec $\mathbb{C}, \widetilde{\mathbb{C}}$) $\to X$ and denote the unique image as x, Φ factors through affine open neighbourhood of x hence it is Ψ_x because Ψ_x does not dependent on the choice of affine neighbourhood.

Proposition 2.24. Let $\Phi = (\phi, \phi^*) : (X, O_X) \to (Y, O_Y)$ be a morphism of schemes locally of finite type over \mathbb{C} , then ϕ maps closed points of X to closed points of Y. Thus, we have a well defined map Max $\{\phi\} : Max \{X\} \to Max \{Y\}$

Proof. Let x be a closed point in X, then x corresponds to a unique $\Psi_x = (\psi_x, \psi_x^*) :$ (Spec $\mathbb{C}, \widetilde{\mathbb{C}}) \to X$ such that $\psi_x(\star) = x$ where \star is the unique point of Spec \mathbb{C} . The composite $\Phi \circ \Psi_x$ is a morphism (Spec $\mathbb{C}, \widetilde{\mathbb{C}}) \to Y$ thus $\Phi \circ \Psi_x(\star)$ is closed in Y, since $\Phi \circ \Psi_x(\star) = \Phi(\Psi_x(\star)) = \Phi(x)$, we conclude that $\Phi(x)$ is a closed point in Y.

When we talk about topology on Max $\{X\},$ we mean the subspace topology induced by the Zariski topology⁴.

Corollary 2.25. Let $\Phi : (X, O_X) \to (Y, O_Y)$ be an open immersion, then $Max \{\phi\}$ is an embedding.

Proof. Write $\Phi = (\phi, \phi^*)$, note that ϕ is necessarily an embedding $X \hookrightarrow Y$ thus Max $\{\phi\}$ being the restriction of ϕ must be embedding as well:

where the vertical arrows and ϕ are embeddings so Max $\{\phi\}$ is embedding as well.

By the same argument and using Lemma 2.20, we can prove the following lemma

Lemma 2.26. Let $\theta : \mathbb{R} \to S$ be a surjective \mathbb{C} -algebra homomorphism between finite \mathbb{C} -algebras. MaxSpec θ is an embedding.

⁴Hopefully, I will be able to main the notation clearly: Max $\{X\}$ is Zariski and $\{X\}^{an}$ is analytic

Remark 2.27. Let X be a scheme locally of finite type over \mathbb{C} and $\mathcal{U} = \{U_i\}$ be an open cover of X. Then $\max\{X\} = \bigcup_i \max\{U_i\}$, so that $\max\{\mathcal{U}\} = \{\max\{U_i\}\}$ is a Zariski open cover for $\max\{X\}$

Lemma 2.28. Let θ : $R \to S$ be a surjective \mathbb{C} -algebra homomorphism between finite \mathbb{C} -algebras. Then the image of $\operatorname{MaxSpec} \theta$: $\operatorname{MaxSpec} S \to \operatorname{MaxSpec} R$ is identified via Proposition 2.21 with the set of \mathbb{C} -algebra homomorphisms $\psi : R \to \mathbb{C}$ such that $\psi(\ker \theta) = 0$.

Proof. Let $\mathfrak{m} \subseteq R$ be a maximal ideal inside the image of MaxSpec θ , i.e. there exists a maximal ideal $\mathfrak{p} \subseteq S$ such that $\theta^{-1}\mathfrak{p} = \mathfrak{m}$. \mathfrak{m} corresponds to the unique algebra homomorphism $\phi_{\mathfrak{m}} : R \to \mathbb{C}$ whose kernel is \mathfrak{m} and \mathfrak{p} corresponds to the unique algebra homorphism $\psi_{\mathfrak{p}} : S \to \mathbb{C}$ whose kernel is \mathfrak{p} . Thus $\theta^{-1}\mathfrak{p} = \mathfrak{m}$ precessly when $\psi_{\mathfrak{p}} \circ \theta = \phi_{\mathfrak{m}}$; and this happens precisely when $\psi_{\mathfrak{p}}$ annaliates the kernel of θ .

Remark 2.29. If we are only considering schemes (locally of) finite type over \mathbb{C} , any morphism of ringed space over \mathbb{C} is automatically a morphism of locally ringed space over \mathbb{C} .

Chapter 3

Analytification of a scheme

3.1 Toplogical story

3.1.1 Affine scheme

Let S be a finitely generated \mathbb{C} -algebra so that $S \cong \mathbb{C}[a_1, \ldots, a_n]$ for some $a_i \in S$. Thus there is a surjection $\theta : \mathbb{C}[X_1, \ldots, X_n] \to S$ defined by $X_i \mapsto a_i$. Thus, we have a morphism (Spec $\theta, \tilde{\theta}$) of schemes of finite type over \mathbb{C} between (Spec S, \tilde{S}) to (Spec $\mathbb{C}[X_1, \ldots, X_n], \mathbb{C}[X_1, \ldots, X_n]$). By Proposition 2.24, we know that Spec θ gives us a continuous map

 $\operatorname{MaxSpec} \theta : \operatorname{MaxSpec} S \to \operatorname{MaxSpec} \mathbb{C}[X_1, \dots, X_n],$

since θ is surjective, MaxSpec θ is injective¹.

Theorem 3.1. The set of closed points in Spec $\mathbb{C}[X_1, ..., X_n]$ corresponds bijectively to \mathbb{C}^n .

Proof. By Proposition 2.21, the set of closed points bijects to \mathbb{C} -algebra homomorphisms $\mathbb{C}[X_1, \ldots, X_n] \to \mathbb{C}$. Thus we only need a bijection between \mathbb{C} -algebra homomorphism $\mathbb{C}[X_1, \ldots, X_n] \to \mathbb{C}$ and \mathbb{C}^n :

- 1. Give a point $p := (a_1, \dots, a_n) \in \mathbb{C}^n$, we define $\phi_a : \mathbb{C}[X_1, \dots, X_n] \to \mathbb{C}$ to be evaluation at the point p.
- 2. Give a \mathbb{C} -algebra homomorphism ϕ , we take the point to be $(\phi(X_1, \dots, X_n))$.

Definition 3.2 (Analytification of topological spaces.). The complex topology of Spec S is the subspace topology of \mathbb{C}^n via the injective map MaxSpec θ . With the complex topology, we denote MaxSpec S as $\{(\text{Spec S})\}^{an}$ and, if $\phi: S \to S'$ is a \mathbb{C} -algebra homorphism, we the induced map between $\{\text{Spec S'}\}^{an}$ and $\{\text{Spec S}\}^{an}$ as $\{\text{Spec }\phi\}^{an}$.

Note that by now we do not know that $\{(\operatorname{Spec} S)\}^{\mathsf{an}}$ is independent from the choice of generators $\{a_1, \ldots, a_n\}$, we will enventually prove that this is true, but let's write $\{(\operatorname{Spec} S)\}_{a_i}^{\mathsf{an}}$ to stress the dependency.

Theorem 3.3. If S, as \mathbb{C} -algebras, is generated by both a_1, \ldots, a_n and b_1, \ldots, b_m , we would have as topological spaces $\{(\operatorname{Spec} S)\}_{a_i}^{\operatorname{an}}$ and $\{(\operatorname{Spec} S)\}_{b_i}^{\operatorname{an}}$ are homeomorphic.

 $^{^1\}mathrm{being}$ the restriction of the injective function $\mathrm{Spec}\,\theta$

Proof. Let us abbreviate the polynomial rings $\mathbb{C}[X_1, \ldots, X_n]$ as R and $\mathbb{C}[Y_1, \ldots, Y_m]$ as R', then we have two surjective homomorphisms $\theta : R \to S$ and $\theta' : R' \to S$ such that $\theta(X_i) = a_i$ and $\theta'(Y_i) = b_i$.

It is sufficient, by symmetry, to prove topology induced by generators b_i 's is finer than that of a_i 's.

Since b_i 's generate S and a_i 's are in S, we can find n polynomials $P_i \in R' = \mathbb{C}[Y_1, \dots, Y_m]$ such that $a_i = P_i(b_1, \dots, b_m)$. Thus we can define $\phi : R \to R'$ by $X_i \mapsto P_i(Y_1, \dots, Y_m)$ such that $\theta = \theta' \circ \phi$. Thus we have a commutative diagram (of plain functions)

It is sufficient to prove that $\operatorname{MaxSpec} \phi$ is continuous, then since $\operatorname{MaxSpec} \theta$, $\operatorname{MaxSpec} \theta'$ and $\operatorname{MaxSpec} \phi$ are all continuous, the identity function $\{(\operatorname{Spec} S)\}_{a_i}^{\mathsf{an}} \to \{(\operatorname{Spec} S)\}_{b_i}^{\mathsf{an}}$ is continuous. Consider a point $c = (c_1, \ldots, c_m) \in \mathbb{C}^m$, then $\operatorname{MaxSpec} \phi(c)$ is the point $\operatorname{eval}_c \circ \phi(X_1, \ldots, X_n)$, i.e. $(c_1, \ldots, c_m) \mapsto (P_1(c_1, \ldots, c_m), \ldots, P_n(c_1, \ldots, c_m))$. This is a map defined by polynomials, thus is continuous. \Box

Now we have proven that the complex topology is independent of generators, we can write $\{(\operatorname{Spec} S)\}^{\mathsf{an}}$ with a clear conscience.

Lemma 3.4. Since $\{(\operatorname{Spec} S)\}^{\operatorname{an}}$, as a set, is just the set of closed points of $\operatorname{Spec} S$, we have a function $\lambda : \{(\operatorname{Spec} S)\}^{\operatorname{an}} \hookrightarrow \operatorname{Spec} S$. λ is continuous where $\{(\operatorname{Spec} S)\}^{\operatorname{an}}$ is with complex topology while $\operatorname{Spec} S$ is with the Zaraski toplogy.

Proof. Let us choose a set of generators a_1, \ldots, a_n and write $R := \mathbb{C}[X_1, \ldots, X_n]$, then we would have the following commutative diagram:

where θ is the surjective \mathbb{C} -algebra homomorphism $R \to S$. The red arrows are continuous, since they define the complex topology; Spec θ is continuous as well. To prove λ_S is continuous, we only need to prove the special case λ_R where $R = \mathbb{C}[X_1, \dots, X_n]$. Since Spec Rhas a basis of basic open set D(f), we only need to check that $D(f) \cap \{(\text{Spec } R)\}^{an}$ is open for any polynomial $f \in \mathbb{C}[X_1, \dots, X_n]$, indeed the intersection is equal to $\{x \in \mathbb{C}^n | f(x) \neq 0\}$ thus open²³.

 $^{{}^{2}\}mathfrak{p} \in D(f)$ if and only if $f \notin \mathfrak{p}$. Hence \mathfrak{m} is in the intersection if and only if \mathfrak{m} is equal to the kernel of evaluation map ϕ_a at some point a and that f is not in the kernel, in another word, $f(a) \neq 0$.

³should this be a separate lemma?

Lemma 3.5. Let a_1, \ldots, a_n be a set of generators of S as \mathbb{C} -algebra and R be $\mathbb{C}[X_1, \ldots, X_n]$ and $\theta : R \to S$ be the surjective map defined by $\theta(X_i) = a_i$. The image of Spec $\theta : \{\text{Spec } S\}^{an} \to \{\text{Spec } R\}^{an} \cong \mathbb{C}^n$ is

 $V(\ker \theta) := \{(x_1, \dots, x_m) | f_i(x_1, \dots, x_n) = 0\} = \{(x_1, \dots, x_m) | p(x_1, \dots, x_n) = 0 \text{ for all } p \in \ker \theta\},$

where f_i generates ker θ .

Proof. $x = (x_1, ..., x_n) \in \text{image} \{\text{Spec }\theta\}^{\text{an}} \text{ if and only if } \psi_x, \text{ evaluation at } x, \text{ annilates the kernel of }\theta \text{ by Lemma } 2.28$

Theorem 3.6. Let S and S' be two finitely generated \mathbb{C} -algebras and $\phi : S \to S'$ be a \mathbb{C} -algebra homomorphism, the natural map $\{\operatorname{Spec} \phi\}^{\operatorname{an}} : \{\operatorname{Spec} S'\}^{\operatorname{an}} \to \{\operatorname{Spec} S\}^{\operatorname{an}}$ is continuous (in the complex topology) and compatible with the inclusion map, i.e. the following diagram is commutative:

Proof. The commutativity is free. Let us choose generators $\{a_1, \ldots, a_n\}$'s for S and $\{b_1, \ldots, a_m\}$'s for S'. Let us write the polynomial ring $\mathbb{C}[X_1, \ldots, X_n]$ as R and $\mathbb{C}[Y_1, \ldots, Y_m]$ as R'. Then we have two surjective \mathbb{C} -algebra homomorphisms $\theta: R \to S$ and $\theta': R' \to S'$ as usual. Since $\{b_i\}$ generates S', we can find polynomials $P_i \in R'$ such that $\phi(a_i) = P_i(b_1, \ldots, b_m)$. Then we can define a \mathbb{C} -algebra homomorphism $\psi: R \to R'$ by $X_i \mapsto P_i(Y_1, \ldots, Y_m)$ giving us the following commutative diagrams:

$$R \xrightarrow{\psi} R' \qquad \{\operatorname{Spec} R\}^{\operatorname{an}} \xleftarrow{\{\operatorname{Spec} \psi\}^{\operatorname{an}}} \{\operatorname{Spec} R'\}^{\operatorname{an}} \\ \downarrow^{\theta} \qquad \downarrow^{\theta'} \qquad \{\operatorname{Spec} \theta\}^{\operatorname{an}} \xrightarrow{\operatorname{Spec} \theta'} \\ S \xrightarrow{\phi} S' \qquad \{\operatorname{Spec} S\}^{\operatorname{an}} \xleftarrow{\{\operatorname{Spec} \varphi\}^{\operatorname{an}}} \{\operatorname{Spec} S'\}^{\operatorname{an}} \\ \end{cases}$$

The red arrows are continuous because they define the complex topology and $\{\text{Spec }\psi\}^{an}$ is continuous because it is defined by polynomial ψ . Thus $\{\text{Spec }\phi\}^{an}$ is continuous.

Corollary 3.7. If $S \to S'$ is an isomorphism of finite \mathbb{C} -algebras, then $\{\operatorname{Spec} S\}^{\operatorname{an}}$ and $\{\operatorname{Spec} S'\}^{\operatorname{an}}$ are homeomorphic.

Lemma 3.8. If $\phi : S \to S'$ is a surjective \mathbb{C} -algebra homomorphism between two finite \mathbb{C} -algebras, then $\{\operatorname{Spec} \phi\}^{\operatorname{an}} : \{\operatorname{Spec} S'\}^{\operatorname{an}} \to \{\operatorname{Spec} S\}^{\operatorname{an}}$ is an embedding.

Proof. Let $\{a_1, \ldots, a_n\}'s$ be generators of S and R be the polynomial ring $\mathbb{C}[X_1, \ldots, X_n]$. Then we have $\theta : R \to S$ such that $\theta(X_i) = a_i$. The composition $R \xrightarrow{\theta} S \xrightarrow{\phi} S'$ is a surjection as well. Thus by taking $\{\text{Spec}(-)\}^{an}$ operation, we get

$$\{\operatorname{Spec} S'\}^{\operatorname{an}} \xrightarrow{\{\operatorname{Spec} \phi\}^{\operatorname{an}}} \{\operatorname{Spec} S\}^{\operatorname{an}} \xrightarrow{\{\operatorname{Spec} \theta\}^{\operatorname{an}}} \{\operatorname{Spec} R\}^{\operatorname{an}} \xrightarrow{\sim} \mathbb{C}^n$$

The whole composition is embedding because of independence of generators and $\{\text{Spec }\theta\}^{an}$ is an embedding as well, thus $\{\text{Spec }\phi\}^{an}$ is an embedding as well.

Lemma 3.9. Let us write $\mathbb{C}[X_1, ..., X_n]$ as R and let $f \in R$ be a polynomial, then the localization map $\alpha : R \to R_f$ induces an embedding $\{\operatorname{Spec} R_f\}^{\operatorname{an}} \hookrightarrow \{\operatorname{Spec} R\}^{\operatorname{an}}$.

Proof. TBD

More generally, we have a corresponding lemma for arbitrary finite \mathbb{C} -algebras.

Lemma 3.10. If S is a finite \mathbb{C} -algebra and $f \in S$, then the localization map $\alpha : S \to S_f$ induces an embedding $\{\operatorname{Spec} S_f\}^{\operatorname{an}} \hookrightarrow \{\operatorname{Spec} S\}^{\operatorname{an}}$. In fact $\{\operatorname{Spec} S_f\}^{\operatorname{an}}$ is identified as the subset $D(f) \cap \operatorname{Spec} S$ where D(f) is the basic open set in $\operatorname{Spec} S$.

Proof. TBD

3.1.2 Arbitrary scheme

Definition 3.11 (Complex Topology). Let (X, O_X) be a scheme locally of finite type over \mathbb{C} , let \mathcal{I} be the collection of open immersions (Spec R, \widetilde{R}) $\to X$ where R is some finite \mathbb{C} -algebra. Then the complex topology on the set of closed points max X is defined as the weak topology with respect to $\{\{\phi\}^{an} | (\phi, \phi^*) \in \mathcal{I}\}$ where $\{\phi\}^{an}$ is the restriction of ϕ to the subset of closed points. When we talk about complex toplogy, we write max X as $\{X\}^{an}$.

Lemma 3.12. Let (X, \mathcal{O}_X) be a scheme locally of finite type over \mathbb{C} , R be a finite \mathbb{C} -algebra and $\Psi = (\psi, \psi^*) : (\operatorname{Spec} R, \widetilde{R}) \to (X, \mathcal{O}_X)$ be an open immersion. Then $\{\psi\}^{\operatorname{an}}$ is an embedding.

Proof. TBD

Lemma 3.13. Let $\lambda_X : \{X\}^{an} \hookrightarrow X$ be the inclusion map, then λ_X is continuous.

Proof. Let $x \in X$ and $U \cong \operatorname{Spec} A$ be an open affine neighbourhood of x. Then we have the following commutative diagram:

The red arrow is continuous by Lemma 3.4; ι_1 is continuous by Lemma 3.12; ι_2 is an open embedding by hypothesis. Thus λ_X is continuous as well.

Lemma 3.14. Let $\Phi = (\phi, \phi^*) : (X, O_X) \to (Y, O_Y)$ be a morphism of schemes locally of finite type over \mathbb{C} , then $\{\phi\}^{an} : \{X\}^{an} \to \{Y\}^{an}$ is continuous.

Proof. Let $x \in X$ and $U \cong \operatorname{Spec} A \subseteq X$ and $V \cong \operatorname{Spec} B \subseteq Y$ such that $\phi U \subseteq V$ be affine neighbourhoods around x and $\phi(x)^4$. Then $\Phi|_U : (\operatorname{Spec} A, \widetilde{A}) \to (\operatorname{Spec} B, \widetilde{B})$ is induced by a \mathbb{C} -algebra homomorphism $\alpha : B \to A$, thus we have the following two commutative squares:

⁴This is possible by definition of being locally finite.

where the red arrows are continuous by Lemma 3.13 and $\{\text{Spec }\alpha\}^{an}$ is continuous by Theorem 3.6. Thus $\{\phi\}^{an}$ is continuous as well.

Corollary 3.15. Let $\Phi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be an open immersion of schemes locally of finite type over \mathbb{C} , then $\{\phi\}^{\mathsf{an}}$ is an embedding of $\{X\}^{\mathsf{an}}$ into $\{Y\}^{\mathsf{an}}$.

Proof. TBD

Here are two easy consequences:

Corollary 3.16. Given two morphisms among schemes locally of finite type over \mathbb{C}

$$(X, O_X) \xrightarrow{(\phi, \phi^*)} (Y, O_Y) \xrightarrow{(\psi, \psi^*)} (Z, O_Z),$$

we have $\{\psi \circ \phi\}^{\mathsf{an}} = \{\psi\}^{\mathsf{an}} \circ \{\phi\}^{\mathsf{an}}$

Proof. Restriction of composition is composition of restriction.

Corollary 3.17. Let $\Phi = (\phi, \phi^*) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of schemes locally of finite type over \mathbb{C} , we have

$$\begin{cases} X \end{cases}^{\mathsf{an}} \xrightarrow{\{\phi\}^{\mathsf{an}}} \{Y\}^{\mathsf{an}} \\ \downarrow \qquad \qquad \downarrow \\ X \xrightarrow{\phi} \qquad \qquad \downarrow \\ Y \end{cases}$$

3.2 Sheaf side

In previous section, we have showed that for any scheme (X, O_X) locally of finite type over \mathbb{C} , we can make a topological space $\{X\}^{an}$ with the complex topology. In this section, we aim to make a sheaf $\{O_X\}^{an}$ on $\{X\}^{an}$. We will consider the affine cases (Spec S, \tilde{S}) where S is a finite \mathbb{C} -algebra by choosing generators; then we prove that the construction does not dependent on the choice of generators; then we glue everything together.

3.2.1 Affine schemes

Let *S* be a finite \mathbb{C} -algebra, we choose generators a_1, \ldots, a_n and write $\mathbb{C}[X_1, \ldots, X_n]$ as *R*. Thus we have a surjective \mathbb{C} -algebra homomorphism $\theta: R \to S$ such that $\theta(X_i) = a_i$. Then ker θ is finitely generated as well, say by f_1, \ldots, f_m . Note that the image of $\{\text{Spec }\theta\}^{an} : \{\text{Spec }S\}^{an} \to \{\text{Spec }\mathbb{C}[X_1, \ldots, X_n]\}^{an} \cong \mathbb{C}^n$, which we often just write as $\{\text{Spec }\theta\}^{an}$ as well, is in bijection with $V(\ker \theta) := \{x \in \mathbb{C}^n \mid f_i(x) = 0 \text{ for all } i\}^5$; hence is closed in \mathbb{C}^n because its the intersection of inverse images of the singleton set $\{0\}$.

We do constructions using f_1, \ldots, f_m , so everything depends on the choice of a_1, \ldots, a_n . In this section, we also denote the sheaf of holomorphic function as $\mathcal{H}ol$ where $\Gamma(\mathcal{H}ol, U) := \{f : U \to \mathbb{C} | f \text{ is holomorphic} \}$ for any open subset $U \subseteq \mathbb{C}^n$.

We use a specialized basis of topology on \mathbb{C}^n .

 $^{^{5}}$ by Lemma 2.28

Definition 3.18 (Generalized polydiscs). A generalized polydisc

$$\Delta(g_1,\ldots,g_l;w_1,\ldots,w_l;r_1,\ldots,r_l)$$

is the set $\{x \in \mathbb{C}^n | |g_i(x) - w_i| < r_i \text{ for all } i = 1, ..., l\}$ where each $g_i \in \mathbb{C}[X_1 ..., X_n]$ is a polynomial of n variables, $w := (w_1, ..., w_n) \in \mathbb{C}^l$ is a point and $r := (r_1, ..., r_l) \in \mathbb{R}^l_{\geq 0}$ are all non-negative. We call w the center of the polydisc and r the polyradius⁶.

Remark 3.19. Traditionally, a polydisc $\Delta(w_1, ..., w_l; r_1, ..., r_l) := \{x \in \mathbb{C}^l | |w_i - r_i| < r_i\}\}$ is the special case $\Delta(X_1, ..., X_n; w_1, ..., w_n; r_1, ..., r_n)$. For a generalized polydisc $\Delta(g; w; r)$, we have a map $g : \mathbb{C}^n \to \mathbb{C}^l$ defined by $x \mapsto (g_1(x), ..., g_l(x))$. Note that $\Delta(g; w; r)$ is equal to $g^{-1}\Delta(w; r)$, the inverse image of the usual polydisc. So generalized polydiscs are exactly the inverse image of usual polydiscs by some polynomial map.

Lemma 3.20 (Basis of generalized polydiscs). All generalized polydiscs form a topological basis of \mathbb{C}^n .

- *Proof.* Every open set is a union of generalized polydiscs. Just take small polyradius and $g_i = X_i$.
 - Intersection of two generalized polydiscs is a generalized polydisc. Consider $\Delta(g; w; r)$ and $\Delta(g'; w'; r')$. The idea is the following: $\Delta(g; w; r)$ is $g^{-1}\Delta(w; r)$ and $\Delta(g'; w'; r') = g'^{-1}\Delta(g'; w; r'))$, and $(g, g') : \mathbb{C}^n \to \mathbb{C}^l \times \mathbb{C}^{l'} \cong \mathbb{C}^{l+l'}$ is a polynomial map, call it G. Since $\Delta(w; r) \times \Delta(w'; r')$ is a usual polydisc, its inverse image under G is a generalized polydiscs and is equal to the intersection of the original generalized polydiscs.

The following terminology is nonstandard.

Definition 3.21 (Preanalytification of sheaves.). We have a sheaf O^{pre} on \mathbb{C}^n is defined to be the cokernel sheaf of the following exact sequence:

 $\operatorname{Hol}^{\oplus m} \longrightarrow \operatorname{Hol} \longrightarrow O^{\operatorname{pre}} \longrightarrow 0,$

where the first arrow, on U, is given by $(a_1, \ldots, a_m) \mapsto f_1|_U \cdot a_1 + \cdots + f_m|_U \cdot a_m$ where $a_i \in \Gamma(Hol, U)$ and f_i generates ker θ

Lemma 3.22. On generalized polydiscs $\Delta_1 \subseteq \Delta_2$, $\Gamma(\mathcal{O}^{\mathsf{pre}}, \Delta_1)$ is isomorphic to

$$\Gamma(\mathcal{H}ol,\Delta_1)/\ker\theta\cdot\Gamma(\mathcal{H}ol,\Delta_1)$$

and the restriction map $\Gamma(\mathcal{O}^{\mathsf{pre}}, \Delta_2) \to \Gamma(\mathcal{O}^{\mathsf{pre}}, \Delta_1)$ is the restriction map

$$\operatorname{res}: \Gamma\left(\mathcal{H}ol, \Delta_{2}\right) / \ker \theta \cdot \Gamma\left(\mathcal{H}ol, \Delta_{2}\right) \to \Gamma\left(\mathcal{H}ol, \Delta_{1}\right) / \ker \theta \cdot \Gamma\left(\mathcal{H}ol, \Delta_{1}\right)$$

defined by $[f] \mapsto [f|_U]$.

Proof. This lemma is going to be hard. Uses coherent analytic sheaves, Cartan's Theorem, Stein manifold, etc. The author of [2, page 108] tells us to look at [1, page 136, definition 2; page 243, theorem 2].

⁶Different polydiscs can have different l

Lemma 3.23. Let x be a point not in $\{\operatorname{Spec} S\}^{\operatorname{an}}$, in another word, $x \in \mathbb{C}^n - \{\operatorname{Spec} S\}^{\operatorname{an}}$. There is an open subset $x \in U \subseteq \mathbb{C}^n$ such that for any generalized polydiscs $\Delta \subseteq U$, we have $\Gamma(O^{\operatorname{pre}}, \Delta) = 0$.

Proof. By Lemma 2.28, x is not in the image of $\{\text{Spec }S\}^{\text{an}}$ precisely when at least one of the $f_i(x) \neq 0$. Say it's the first one. Then, there is some open neighbourhood U around x such that $f_1 \mid_U$ is nowhere zero, i.e. invertible. Thus for any generalized polydisc $\Delta \subseteq U$, we have that the ideal ker $\theta \cdot \Gamma(\mathcal{Hol}, U)$ is everything so that $\Gamma(O^{pre}, \Delta) \cong \Gamma(\mathcal{Hol}, \Delta) / \ker \theta \cdot \Gamma(\mathcal{Hol}, \Delta)$ is trivial.

Corollary 3.24 (O^{pre} is supported in $\{\operatorname{Spec} S\}^{\operatorname{an}}$). Let $V \subseteq \mathbb{C}^n - \{\operatorname{Spec} S\}^{\operatorname{an}}$ be an open set in \mathbb{C}^n , then the sections of O^{pre} on V is trivial.

Proof. Let $\sigma \in \Gamma(O^{\text{pre}}, V)$, we want to show that $\sigma(x) = 0$ for all $x \in V$. By Lemma 3.23, there exists some open neighbourhood $x \in U \subseteq V^7$ such that sections of O^{pre} on any generalized polydiscs contained in U is trivial. Thus we can cover V by a family of generalized polydiscs Δ_i such that $\sigma \mid_{\Delta_i}$ are all zero; therefore by sheaf axioms, σ is zero.

Corollary 3.25. Let $V \subseteq \mathbb{C}^n$ be an open subset then we have an isomorphism

 $\Gamma(\mathcal{O}^{\mathsf{pre}}, V \cup (\mathbb{C}^n - {\operatorname{Spec}} S)^{\mathsf{an}})) \cong \Gamma(\mathcal{O}^{\mathsf{pre}}, V)$

Proof. Write $A := \mathbb{C}^n - {\text{Spec } S}^{\text{an}}$, we need to prove the restriction map from $V \cup A$ to V is both injective and surjective.

- Injectivity: suppose a section $\sigma \in \Gamma(O^{\text{pre}}, V \cup A)$ is in the kernel of the restriction map, in another word, $\sigma \mid_V$ is zero. Then if we cover $V \cup A$ by V and A, we would know that $\sigma \mid_A$ is zero as well⁸, so by sheaf axiom, σ is zero.
- Surjectivity: let σ be a section in $\Gamma(O^{\text{pre}}, V)$, then we can glue σ and $0 \in \Gamma(O^{\text{pre}}, A)$ because $\sigma |_{V \cap A}$ must be zero, since $\Gamma(O^{\text{pre}}, V \cap A)$ is trivial by Corollary 3.24.

Definition 3.26 (Analytification of sheaf). The analytification $\{\tilde{S}\}^{an}$ of \tilde{S} is a presheaf on $\{\text{Spec }S\}^{an}$ defined by the following:

• For any open set $U \subseteq \{\text{Spec } S\}^{an}$, we define the sections $\Gamma\left(\{\tilde{S}\}^{an}, U\right)$ to be

$$\Gamma(\mathcal{O}^{\mathsf{pre}}, U \cup (\mathbb{C}^n - {\operatorname{Spec}} S)^{\mathsf{an}})).$$

• For any open sets $U \subseteq V \subseteq \{\operatorname{Spec} S\}^{\operatorname{an}}$, we define the restriction map of $\{\tilde{S}\}^{\operatorname{an}}$ from V to U is the restriction map of O^{pre} from $V \cup (\mathbb{C}^n - \{\operatorname{Spec} S\}^{\operatorname{an}})$ to $U \cup (\mathbb{C}^n - \{\operatorname{Spec} S\}^{\operatorname{an}})$.

This defines a presheaf, the satisfaction of sheaf axioms are essentially from that of O^{pre} .

Remark 3.27 (Independence of the generators f_1, \ldots, f_m). Though the definition of O^{pre} explicitly uses f_i 's, we see that on the basis of generalized polydiscs, the sections on a generalized polydisc is $\Gamma(\mathcal{Hol}, \Delta) / \ker \theta \cdot \Gamma(\mathcal{Hol}, \Delta)$ which does not mention any generators. Since two sheaves are isomorphic if their sections on a basis are isomorphic, we must conclude that O^{pre} is independent of the choice of f_1, \ldots, f_m as well. But we don't know yet if the construction is independent from the choice of a_1, \ldots, a_m .

⁷ if U is not a subset of V, then use $U \cap V$

⁸by Corollary 3.24 and that A is open

Bibliography

- [1] Robert C Gunning and Hugo Rossi. Analytic functions of several complex variables, volume 368. American Mathematical Society, 2022.
- [2] Amnon Neeman. Algebraic and analytic geometry. Number 345. Cambridge University Press, 2007.
- [3] The Stacks Project Authors. *Stacks Project*. https://stacks.math.columbia.edu, 2018.