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1 Introduction

Homotopy type theory (abbreviated as HoTT) as its name suggest is a
type theory with a homotopical point of view. As a branch of type the-
ory, it shares most common features with other Martin-Lof intuionistic type
theories; some of the distinguishing features of HoTT are its identity type,
higher inductive types and the univalent axiom. HoTT is intended as an
alternative foundation of mathematics on par with ZFC set theory. With
univalent axiom and identity type, HoTT is known for its slogan that “iso-
morphic objects are identitcal”. Awodey argues that HoTT should be the
choice of mathematical structuralists.[1] But higher inductive types pro-
vides a nice syntactic approach to geometry and it would be a pity if HoTT
and, in particular, higher inductive types are only available to those who
hold a structuralist view. In this paper, I will develop an alternative neu-
tral and instrumentalist reading so that mathematicians with philosophy of
mathematics standpoint other than structuralism can utilise HoTT. A short
overview of HoTT is given in Appendix A.

2 Basic feature

Like other type theories, any term' in the language of HoTT has a type
and a term is always associated with its type though usually its type is
obvious from context so that its type information is ignored for typograph-
ical reasons; while technically, all terms are associated with its types. For
example 1 : N is understood to mean the term 1 is of type N. When N is
considered as a term, it has its own type N : i where U/ is a universe of types
so that U is closed under forming functions, products, sums etc. When U is
considered as a term, it has its own type U : Uy and U, : Uy etc. This hier-
archy of universes is cumulative i.e. o :U; means that a : U; for all i < j 2
The reason for this hierarchy of universes is because if U : U is allowed,
then the system would be inconsistent because of the Girard paradox.[3]
The intuition behind Girard paradox is that universe is an extensional type
so that it is determined up to what is contained as a term of that universe;
consequently a universe U : U would imply a never completable construction

1Although the term “term” has an unwanted linguistic connotation, but the term
“term” is standard.

2the subscript 7,7 should not be confused with terms of natural numbers, they are
intended as labels only and a bigger subscript means a “bigger” universe. Indeed n — U,
is ill-typed because this “function” has to lie in a universe V of all universes which is
inconsistent because in particular V : V is ill-formed.



of U similar to how the “set” of all set is problematic in set theory.?

Type and proposition Following Ladyman, a type can be considered
as a concept while a term of a type can be understood as witness of the
concept so that we do not have to enter the debate of ontological status
of mathematical objects.[6] Under this interpretation, for example the type
N is understood as the concept of natural number and 1 : N is as a spe-
cific instance of the concept natural number. Whether or not the natural
number exists in any significant sense at all, we can nonetheless form the
concept of natural number, indeed otherwise we would not be able to even
ask the question of existence of natural number. Then any type « can be
thought as a proposition, namely the proposition that o has a term and
by exhibiting a term a : a we prove the proposition corresponding to «,
although most types contains much more information other than that its
inhabitedness, that is, there might be different terms witnessing the same
type. This is where HoTT diverges from classical logic, because there are
non-equivalent ways to prove the same proposition and this makes a huge
difference, see section 4. In order to practice mathematics in HoTT, one at
least need to be able to form conjunction, disjunction and material impli-
cation of any two propositions, negation of any proposition and universally
and exisitentially quantified propositions; this will be achieved under Curry-
Howard correspondence. A quick overview is given in Appendix A. In what
follows, unless said otherwise Greek letters will be denoting types and corre-
sponding lower case Latin letter with possible subscripts denoting its term
(so for example a : ) and upper case Latin letter denoting its corresponding
proposition & la Curry-Howard (so for example A is the proposition that «
has term) and mathcal font letters denoting universes (although universes
are types as well). In the next few paragraphs, some non-classical behaviours
of HoTT are exhibited.

Currying Functions often take more than one inputs to give a result. In
HoTT, this can be done in two ways. One is by taking the product type of
all inputs so that the product type would contain all the informations for the
said multiple inputs; this is often called an uncurried function. Alternatively,
a multiple-input function can be achieved by currying, i.e. instead of taking
all the input simultaneously, one creates a function which takes multiple

3for everything after this point, the level of universe is not been dealt carefully, thus
everything involve a universe should be read with a typical ambiguity, i.e. replace it with
higher level universe if necessary.



inputs one by one. For example, to define (z,y) — xY, one instead defines
x +— (y — 2¥); that is, to define exponentiation, one defines a function which
upon receiving an input z gives a function computing powers of x. Curried
functions are more common practice in HoTT. This seems to be unnatural
to common mathematical practice, but currying is often useful in common
practice as well, for example natural number addition can be implemented
by fixing one addend first or that Riesz representation theorem is proved by
fixing one input of an inner product.

Total functions There are no partial functions in HoTT, if a function f
is of type o — 3, then for every a : «, f(a) : § and thus, in particular, must
be defined. If one really need to define a partial function g, one form a type
B by taking the coproduct of 5 and 1 so that if g(a) is not defined, g(a) is
1, see section A.4.

Divergence from classical logic It is unheard of that double negation
elimination is not present in an intuitionistic logic, but in HoTT, double
negation elimination cannot even be consistently assumed. Indeed, there is
a type a such that there is a term of type of type (((« — 0) — 0) — a) - 0
witnessing the proposition that =(-—A == A) provided that « repre-
sents A. Since double negation elimination and the law of excluded mid-
dle are materially equivalent, the law of excluded middle cannot be con-
sistently assumed as well. The crude justification for the invalidity of is
a demand to know exactly which disjunct is true, however the law of ex-
cluded middle would not give such information, see also section 4. Simi-
larly, from “=V” to “Jd—" cannot be assumed as well since it is implied by
double negation elimination. Thus, one cannot in general construct a term

<<H ﬁ(a)) — O) — Z (B(a) — 0). This because even we know that

H B(a) | — 0, there is in general not a way to construct term a : « en-
a:x
abling us to construct a term of type Z 8. Dependent product can also
(e

be used to encode subtype, for a term of type Zﬁ are of the form (a,b)

such that @ : @ and b : B(a), i.e. a is such thataﬁ(a) holds. When using
dependent pair to encode subsets we in general will not necessarily have
(AC)C = A where - denotes set theoretic complement because of issues of
double negation elimination. Also, x can occur in {a € A | B(a)} more than



once, this is because we might be able to construct (a,b;) and (a,b2) such
that by #g(a) b2, i.e. we can witness (a) in more than one non-identical
ways. This is the proof-relevant feature of HoTT that there might be many
ways to prove a proposition and we are able to compare the different proofs,
see also section 3.1.

3 Identity Type

In this section, identity type is introduced in section 3.1 exactly as presented
in HoT'T Book, similarly for the univalent axiom. Then I will briefly explain
how to form identity across different types in HoTT. In the rest of this
section, I will try to give a justification of path induction.

3.1 Overview

Identity type over a type a : U, written as - =, - : U, has a single con-
structor refl, : H a = a. If context is clear, it is common practice to write

a:x
refl, to mean refl,(a). This corresponds to that, given a,a’ : o, one could
always ask if a = a’, but only knows a = a without any more information.
Given a family of types « : H a1 =4 a2 — U and a c¢: y(a, a,refl,), then
ay,az:q
a function of type H H v(a1,az,p) can be constructed such that
a1,a2:Q P:a1=qa2
f(a,a,refly) = c. More formally we have:

ind.__. : H (Hv(a,a,reﬂa)> — < H H 7(a1,a2,p)>

Vo agia G1=at2—U \aia a1,a2:Q p:a1=aa2

such that ind.—_.(v,c,a,a,refly) = ¢(a). The inductor states that to con-
struct a term from identity type, it is sufficient to work out the “recipe” only
for trivial self identities of a for all term a : . We often find the inductor for
type a =, - more convenient, where a : « is a fixed term. The inductor for
this type states that to construct a thing from identity whose left hand side
is a, it is sufficient to work out the “recipe” only for refl,. More formally:

ind,—,. : I[I  eret) = [T] TI @'p)

’Y:Ha/:a(a:aa/)ﬁu a,:ap:a:aa,

such that ind,—_.(7, ¢, a,refl,) = ¢. In fact, ind.—_. and ind,—,. are logically
equivalent, thus I will call them both path induction.



Proof relevancy Assume that identity type deserves its name in this
paragraph. Since identity type can be formed over any type, for any a,a’ :
a and p,q : a =, a, one can form type p =,—_ o ¢; and for any x,y :
P =a=qa’ ¢, One can form the type z =,= _ , y, etc. These types forms an
infinite groupoid structure, this is one of rﬁany reasons that HoTT itself is
of mathematical interest. Under Curry-Howard correspondence, whether or
not this type is inhabited corresponds to whether or not the two witnesses
of a being identical with @’ are equal. Moreover given any proposition A,
assume « formalises A in HoTT and a,a’ : o formalises two proofs of A,
then it makes sense to compare a and a’. Though the notion of equality of
proofs may sound to be fine-grained, it may not be the case for some types.
Just when two proofs are considered to be equal by HoTT is a difficult
question to answer, this is part of reasons why the co-groupoid structure of
identity type is mathematically sophisticated. For example, N has decidable
equality, i.e. if p1,p2 : @ = b where a,b : N, then p; and py are guaranteed
to be equal in the sense of HoT'T; but for other types, identity type might
not be decidable.

Judgemental equality Judgemental equality, denoted by =, holds be-
tween two terms if and only if two terms are the same by definition or more
formally the same after a series of «, 3,1 reduction/conversions. To em-
phasise the difference between judgemental equality and identity type, the
latter is often called propositional identity. Judgemental equality cannot be
formalised inside HoTT, i.e. a = b is not a valid expression in HoTT while
propositional equality a = b (when the types of a, b are the same) is a valid
expression in HoTT. Since judgemental equality is “equal by definition”, we
use := to introduce a definition.

3.1.1 Minimality and functoriality

Assume path induction in this section. In this section, we show that iden-
tity type is at least not outrageously wrong as identity in ordinary sense.
We note that identity is necessarily the minimal equivalent relation that re-
spects all function application. We show that identity type is both minimal
and functorial. Informally, a minimal equivalent relation R is an equiva-
lent relation such that, for any equivalent relation R’, aRb implies aR'b; a
functorial relation R is such that for any function f, aRb implies f(a)Rf(b).

Minimality Identity type is minimal. Since aR'd would automatically
hold as long as a equals b and R’ is an equivalent relation, we need to prove



that identity type is reflexive, symmetric and transitive.

Reflexivity This is just the constructor, refl.

Symmetry We want a term of type v(a,a’,p) := (a’ =4 a) where v :
H (a =a a’) — U, by path induction, we only need to construct

a,a’:a

a term of type 7(a, a,refl,) — we use refl,. We also write this as 1

Transitivity We want a term of type (a1, az2,p) := H a] =q a3, by

az:«x
q:a2=qas3

path induction we only need to construct a term of type y(a, a,refl,) =
H a=qad — weuse a — 1, .. We also write this as -. .

a':a
qa=qa’

Functoriality Identity type is functorial. We need to show that for any
fia—= Band a =, d, fla) =5 f(d), i.e. we want a term of type
v(a,d’,p) := f(a) =p f(a’), by path induction, we only need a term of type
v(a,a,refly) = f(a) = f(a) — we use reflf(,). We also write this as ap;(p)

However, this does not justify identity type of its name for this relies on
path induction and that the only requirement for identi ty is minimality and
functorality. The former is not intuitive and we move justification of path
induction to latter sections; and the latter condition is only necessary but
not sufficient.

3.1.2 Transport

In this section we show indiscernible of identicals. Let 8 be a family of
types indexed by a and p : a =, a’. Then B(a) — B(a') is witnessed.
By path induction, we only need to show that 5(a) — [(a) is witnessed,
indeed it is witnessed by 15(,). Instead of call this function indiscernible of
identities, we call it transportg : B(a) — B(ad’), because this function will
transport a term of type 3(a) to a term of type 3(a’) according to p. By how
transport is defined and path induction, we have transportfcﬂa =1g0)-

3.1.3 Identity system

An identity system ¢ over « is a family of types @« — (o — U) with the
same behaviour as the identity type on «. This is:



e we have a term p : H t(a,a). (This is like the refl : Ha =q Q.)

a:x a:x

e Given any type family ~ : H t(a,a’) — U and aterm c : H v(a,a, p(a)),
a,a’:a a:x
we can construct a term f : H H v(a,d’, p) such that f(a,a,p(a)) =
a,a’:a p:(a,a’)
c(a). (So p has the same induction principle as identity except that
computation only hold propositionally instead of judgmentally.)

It turns out that p is an identity system over « is logically equivalent to that
for any a : «, the type Z t(a,a’) is contractible, i.e. it has a specified term

a’:a
and all other terms are propositionally equal to the specified term.

3.2 Univalent Axiom

The univalent axiom very roughly states that isomorphism is isomorphic
to identity:
(a~B) ~(a=p).

In this section we will make this slogan precise. Then we will utilise this
section to build an account of identity in HoTT with the univalent axiom
44 7

in the next section. Since univalent axiom involves “~", we will make this
notion precise first.

3.2.1 Isomorphism, Equivalence and Univalence

A function f : @ — B is an isomorphism when it is a structure preserv-
ing invertible map, that is if there another structure preserving function
g : B — asuch that go f ~ 1, and fog ~ 1, where - ~ - denotes
that two functions are pointwise equal. We use “~” instead of “=" be-
cause without univalent axiom, function extensionality is not provable. In
HoTT, any invertible map would be an isomorphism because functions in
HoTT are automatically structure preserving. To properly implement a
function between structures, the structural information must already be
present in the type of domain and codomain. For example the type of
groups in universe U can be defined as Group := ZGroupStructure(a)

Qs
where GroupStructure(a) encodes a binary associa‘é/ilve operation, a neu-
tral element and an unary inverse operation. Then if we have two groups



1,72 : Group, then a function f : y; — 72 must provide a recipe to pro-
duce pra(72) : GroupStructure(pri(vy;)) from the underlying “set” of v;
and its group structure. If one truly wants to define a function that does
not respect structures, one should define a function of type v — pri(72)
instead. So we can define the type of isomorphism between o and S to

be Iso(a,f) = Z isIsomorphism(f) where isIsomorphism(f) is de-
f:a—pB
fined as Z (gof ~ 1) x(fog ~ 1g). However, if “ ~ .” is taken
g:8—=y

to be Iso(-,-), the univalent axiom would be inconsistent. This is be-
cause Iso contains more information than the classical notion of isomor-
phism, namely there might be non-equivalent way of proving a function
being an isomorphism. The obvious solution is use proposition truncation,
and this would serve a functioning univalent axiom.* A more constructive

approach is to use bi-invertibility Biinvert := Z isBiinvertible(f)
f:a—pB
where isBiinvertible(f) := Z gof~14] x Z fog~1g|,
g:b—a h:B—a

in fact isIsomorphism(f) and isBinvertible(f) are logically equivalent,
but Biinvert does not contain any more information other than itsbi-
invertibility. Thus the slogan should be “Equivalence is equivalent to iden-
tity”. This clears the definition of - ~ -, next we will formally introduce
univalent axiom.

Since universe U is a type, we have identity type - = - of /. Then we can
define a function by path induction id2equiv(a, 8) : @ =y 8 — « ~ [ such
that id2equiv(e, S, refly) = ((1a, (1o, a — refly)), (1o, (Lo, a — refly))).
Note that id2equiv = transport®”*((14,a > refly)), i.e. the equivalence
given by id2equiv from a path p : a =/ B is given by moving the equivalence
1, between o and a to an equivalence between o and 8. The univalent
axiom is the statement that id2equiv is an equivalence. We write ua : o ~
B — a =y B to be the inverse of id2equiv. So the univalent axiom not only
postulates the existence of ua : @ ~ f — a =y B, it further asserts that
ua and id2equiv are inverses, we always have pr;(id2equiv(ua(e)))(a) =g
pr;(e)(a) for all equivalence e : @ ~ /3. Since being an equivalence is a mere
proposition, we will use an equivalence as if it were a function, for example we
write pry(e)(a) simply as e(a). Because id2equiv is an equivalence, we also

4 .
See section 4.



have that all equalities between types come from some equivalence between
types. So we can perform induction on equivalences as well: given a family of
types v : o ~ 3 — U, by univalent axiom we have 7' : & = 3 — U such that
v =+ o id2equiv. Then to prove H ~(e), we can prove that H v (p).
e:a~f3 p:a=p3
By path induction, we need only a proof of 7/ (refl,) which corresponds to a
proof of ¥((1,-)) where _ is any term witnessing that 1, is a equivalence.’
As a sanity check, note that under the univalent, we are never identifying
any discernible types, for otherwise these types cannot be equivalent.

3.3 Heterogeneous identity

An immediate objection for identity type presented in section 3.1 is that
the supposed identity is only relative to a type «, i.e. if a : o and b : 8 are
of different type then it is not even legitimate to ask if a = b. Whether the
natural number 0 equals the real number 0 or not, one should at least be
able to talk about this. I present how heterogeneous identity can be defined
but I also argue why it is not generally useful in HoTT plus the univalent
axiom.

Heterogeneous identity Assume o : Uf; and 3 : ;. One can define an in-

ductive type - L Unax(i,j) With only one constructor hrefl : H (a H a) 5
a,f P a,o

I do not attempt to justify that heterogeneous identity deserves its name of

identity, for, after explaining its purpose in this paragraph, I will argue that

all its purpose can be fulfilled by identity type plus univalent axiom and, in

latter section, I will attempt to justify that identity type and path induc-

tion. Heterogeneous identity is to circumvent dependent types. For example
B:oa—Uand f: Hﬁ(a), then given a =, a’, we can show f(a) L fa).
a,a
a:x

In particular since 2 = 2 + 0, R? ugu R2tY. However I think this hetero-

geneous identity type is unsatisfyiné; because the resulting type must live
in a bigger universe than « and [ for otherwise it is inconsistent while
identity type lives in the same universe as «. So if heterogeneous identity
type were to replace identity type in HoTT, there would not be an infinite
groupoid structure of heterogeneous identity type, because there would not

5 . . . . oy . . .
since being equivalence is a mere proposition, it does not matter which term is used.

This is also called John Major equality, it is part of standard library of Coq under the
name JMeq.

10



be universe large enough to contain it, and thus HoTT would lose part of
its mathematical interest. Also heterogeneous identity type is not really a

generalisation of identity type, for even though a =, o’ implies a 5 ,
a,a

the converse is not true due to proof relevancy of HoTT. More specifically,
heterogenous identity between a : a and b : 8 is materially equivalent to
identity between (a,a) and (3,b) where the latter is not materially equiva-
lent to the identity between a and b. Because comparison of (a, a) and (5, b)
in HoTT is dependent on how « and § are identified in HoTT sense under
univalent axiom.

I argue the correct way to compare two terms of different type is to use
a sigma type so that their types are remembered. So to compare whether
a:«:Uisequal tob: [ : U, one form the type (a,a) =5 U (8,b).
By transporting, to construct a term of (a,a) =y ,y (8,b) is equiva-
lent to construct a term p : a = B and then construct a term of type
transport],{Lu (a) =p b.” In this sense, a natural number 0 is definitely
not equal to the real number 0 if we assume univalent axiom. For oth-
erwise the natural number is equal to real number and, by univalent ax-
iom, there is a bijection between them. I do not think this necessarily
goes against mathematical Platonism, for I will later develop a philosoph-
ically neutral reading of identity type and, under this reading, the claim
that (N,0 : N) # (R,0 : R) is only the claim that not all proof involving
0 : N can be “transported” into a corresponding proof involving 0 : R. It
is perhaps interesting to observe that since N and QQ are equinumerous, it
is at least possible to have N = QQ via univalent axiom, thus it is at least
possible to have (N,0 : N) = (Q,0 : Q), however, if this is true, it does
not assert that 0 : N and 0 : Q are the same in a Platonistic sense under
my reading, it only assert that a proof involving 0 : N can be transported
into a corresponding proof involving 0 : R according to how natural num-
ber and rational number are identified. I also remark that this is not the
most outrageous practice to only be able to make equality claim by remem-
bering extra type information, consider the following example. There is a
clear sense in which 0 #g 1 holds. However since AddGrp := (R, +,0) and
MultGrp := (R™, x, 1) are isomorphic (via exp) and hence equal under uni-
valent axiom, (AddGrp, 0 : |[AddGrp|) = (MultGrp, 1 : [MultGrp|) also makes
(a homotopy type theoretic) sense; colloquially, it is the claim that 0 and
1 serves the same (group theoretic) role in two isomorphic groups. In this
example, since the most ambient identity is equality as real numbers, no

"The technical details are quite long, see [13, theorem 2.7.2].
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mathematician would seriously claim that 0 = 1 without writing a remark.
But when there is not an immediate sense in which two things could be
compared, a mathematician perhaps would write down “flip of a pentagon
equals to (0,1) € Z/5Z x Z/2Z”. This is not claiming identity should hold
between “flip” and (0,1); rather, I only claim that HoTT can make sense
of (and even make it rigorous) what sometimes mathematicians informally
and abusively equates.

Whether or not the identity type in HoTT in any sense resembles the true
identity relation is not my main concern, for I aim to develop a neutral read-
ing without appealing to identity type encoding identity so that the resulted
HoTT can be appreciated by mathematicians with different philosophy of
mathematics standpoint.

3.4 A justification of path induction

Even if we ignore the issue of the inability of forming identity type across
different types, the induction principle for identity type is still highly unin-
tuitive. It states that to prove a theorem about all identities of terms of type
a, it suffices to prove the theorem only for trivial self-identities. Essentially,
this is like doing mathematical induction on natural number with only base
case and call it a day. Ladyman justifies induction principle by appealing
to uniqueness principle of identity type and substitution salva veritate.[4] I
think the argument is unsatisfactory in at least two ways. Firstly, uniqueness
principle of all other types are derived based on the corresponding induction
principles, it makes the justification in some degree ad hoc if the uniqueness
principle of identity type must be assumed. Moreover, the uniqueness prin-
ciple of identity type states that by fixing a; : «, then for any as : a and
p : a; = ag, one would have a term of type (aj,refl,,) =3, (a=ada’) (az2,p)
which itself could not be justified by intuition. Secondly, substitution salva
veritate can only be assumed if one assumes that identity type is or closely
resembles the real identity relation. But if one can justify this resemblence,
the induction principle of identity type should be accepted as or at least
approximation of induction on the real identity relation in some sense via
Curry-Howard correspondence. I think to justify identity type as an ap-
proximation of the true identity relation is a much harder task. Thus, I
propose an alternative route — without assuming identity type codifies the
real identity relation, I argue that its induction principles can still be jus-
tified without appealing to what we think about the real identity relation.
And then use the justified induction principle of identity type to give a

12



neutral reading of HoTT.

Since this section is to discuss induction principle of identity type, it would
be unjustified of me to call it identity type when what it is is unclear. Thus,

we use a[a]b to denote identity type with constructor box : Ha@a in

a:x
HoTT and just call it box type in order not to be deceived by the symbol
- =. .. Whenever a/ap, we say a a—boxes b and if context permits, just a
boxes b. The induction principle for box type is

ind‘@. : H (H’y(a,a,reﬂa)) — H H ~v(a1, az,p)

a:o a1,as:a
'y:]_[al’%:aal@azﬁu 1,02 p:al@ag

The induction principle of box type is justified by box type being an in-
stance of W-type. And W-type is justified by its usefulness, for example,
natural numbers, lists are all instances of W-type. As long as we do not give
box induction principle any philosophical significance, let us tolerate box
induction by not assuming any meaning except the type of box induction.
Then, correspondingly, one can define a box system to be a family of types
B :a— (o — U) such that:

1. we have a term p : Hﬁ(a, a)

a:x

2. Given any type family ~ : H B(a,a’) — W and aterm c : H ~v(a,a,p(a)),

a,a’:« a:q
we can construct a term f : H v(a,d’, p) such that f(a,a, p(a))Oc(a).
a,a’:«
p:B(a,a’)

A box system is of course logically equivalent to that for any a : «, the type
Z B(a,a’) is box-contractible, i.e. it has a specified term and all other term

a:«
boxes the specified term.

Suppose we work with universes up to WW. We now construct a box system
over a.. Consider the following type

va,a’) := ( Z ((6(a) <> 6(a")) — 0)) — 0.

S:a—W
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This type states that the existence of a § such that § discerns a from a’ would
be contradictory, i.e. ¢ is (a version of) indiscernibility. We now prove that
¢ is a box system by proving it is box-contractible. Because 0 is a type
such that every terms of 0 boxes each other, we have that i(a,d’) is also a
type such that every terms of ¢(a,a’) boxes each other. So we only need to
exhibit a term of Z va,a’) — we use i := (a, (6, Hs) —= Hs (L5(a), Lo(a)))-
a’:a

We always have i : t(a,a) defined as above. And we can then define a box;
system to be a family of types 8 : @ — (o — U) such that

1. we have a term p : Hﬁ(a, a)

a:x

2. Given any type family ~ : H B(a,a’) — W and a term c : H ~v(a,a, p(a)),

a,a’:a a:q
we can construct a term f : H v(a,d’, p) such that t(f(a,a, p(a)), c(a)).
a,a’:«
p:B(a,a’)

Again, box; system is logically equivalent to Z B(a,a’) is box;-contractible;
a’:a
using this, one can prove again that ¢ is a box; system with “constructor”

i: H t(a,a). Then the second clause of definition of box; system states that

a:x

given any type family ~ : H t(a,a’) — W and a term c : H'y(a,a,i(a)),
a,a’:a a:x
one can construct a term f : H v(a,d’, p) such that ¢(f(a,a,i(a)),c(a)).
a,a’:«
pi(aa’)

To put symbols in words, for any predicate « involving terms of a being
indiscernible, if we always know that v holds for all terms of a which are
discernible from itself in a trivial way, then we know that ~ holds for all
indiscernible terms, trivially indiscernible or non-trivially indiscernible. Let
us call this indiscernibility induction. Before we continue with justifying
path induction, let us note that a(Jb implies ¢(a, b).

We now show a variant of uniqueness principle for box type. Given a,a’ : «
and p : daljd’, we have ¢ ((a,boxa) , (a/,p)). To see this, we need to as-
sume that (J,Hs) : Z (6(a,box,) <> 6(a’,p)) — 0 and derive a contra-

0
diction. However by a box induction, one get (a,box,)(a’,p) and hence
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t((a,box,), (a’,p)) and thus a contradiction follows. Then we use indiscerni-
bility induction to derive substitution salva veritate for ¢, i.e. we want to
show that for any a, a’ such that t(a,a’) and any family of types 7, we would
have v(a) — v(a’). By indiscernibility induction, we only need to show this
for a and i : t(a,a), then we take 1.,). Now with the variant of unique-
ness principle and substitution salva veritate, we could derive box induction
again: fix a v : H(a'Da) — W and a term ¢ : y(a, box,), we want a term of
a:a
type H v(a’,p). Fix a’ and p, by substitution salva veritate, we only need
o
p:a’Ua
to construct a term of ~y(a,box,) since the variant of uniqueness principle
tell us ¢((a,box,), (a’,p)); then we can just take c.

Let me summarise my argument:

1. Based on usefulness of W-type, we tolerate the existence of box type
on programatic ground, but we do not assume any meaning of it;

2. without assuming any meaning of box induction, we derived indis-
cernibility induction;

3. by indiscernibility induction, we derive a variant of uniqueness prin-
ciple for box type and substitution salva veritate for indiscernibility

type ¢;

4. using the variant of uniqueness principle and substitution salva veri-
tate, we infer box induction again.

On the first sight, this looks like a huge effort to derive a tautology — by
assuming box induction, we infer box induction. From step 1 to step 2, we
do not assume box type to bear any meaning other than that box induction
has a particular type, which we do not assume to have any philosophically
significance as well. But ¢ indeed has meaning, namely it convey a version of
indiscernibility. Its meaning is granted just by its type under Curry-Howard
correspondence alone. And ¢ has an “induction” principle of the same shape
as box induction. Since ¢ has meaning, its induction principle has meaning
as well, namely that any theorem/construction for indiscernible terms can
be sufficiently proved/constructed only on trivially self-indiscernible terms.
Then using indiscernibility induction, we can give meaning to a variant of
uniqueness principle that any two “boxes” are indiscernible in the sense of
¢ and indiscernibility satisfies substitution salva veritate. Then finally, we
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get box induction again, but now box induction is derived from meaningful
indiscernibility induction and thus carries weight. So in a nutshell, box
induction is justified because as long as we know that any two “boxes” are
indiscernible and indiscernible terms can be substituted salva veritate then
a proof of box induction can be provided. And in this proof, we did not
utilise any assumption of the real identity relation being encoded by box

types.

The first objection/confusion I anticipate is the transition from meaning-
less box induction to meaningful indiscernibility induction and it is implau-
sible to have meaning suddenly appearing. The meaning of indiscernibility
induction is from type information of + under Curry-Howard correspondence,
not from box induction. I think an analogy of auxiliary line in plane geome-
try might help. For example one wants to prove that D is mid point of AB
in a triangle ABC under some condition, and it so happens that an auxiliary
line from C' to D helps the proof. The auxiliary line can help with proofs
not because the auxiliary line is assumed to be median line, it just make
information easier to see; and probably a proof without using auxiliary line
exists. Similarly, there perhaps are proofs of indiscernibility induction with-
out involving box type and box induction, but box type and box induction
just makes the work easier.

The next objection is that ¢ is not indiscernibility. I can think of two
reasons:

1. ¢ at best is indiscernibility up to universe W.

2. The negation of ¢ does not give us an actual way to discern objects
because of nonexistence of a double negation elimination law.

The second point is more of a debate between classical mathematics vs.
intuitionism, and it is too big a topic to be contained in this paragraph
so we move it to later sections. For the first point, I will start my de-
fence by noting W is arbitrary and the above argument would work in any
universe and universes are closed under (dependent) product, coproduct,
(dependent) function, box and W type, so if we have decided which universe
our mathematical object of study lives in, then that universe tends to be
mathematically rich enough. Thus, even if we only stay in a universe, there
are a lot to be proved. And if it is indeed necessary to investigate in some
even larger universe, and since universes are assumed to be cumulative, ¢
can be moved into the larger universe. Admittedly, not every interesting
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question can be asked if we assume a maximal universe even if the maximal
universe can be arbitrarily large. For example, highly likely, it is incon-
sistent to formalise HoTT with unlimited universe hierarchy within HoTT
with a maximal universe. The defect of ¢ is that it cannot quantify over ev-
ery possible properties/predicates/functions whatsoever. But if there is any
framework that can do this without a Russell or Girard flavoured paradox,
then that framework is certainly better in this perspective. I doubt if there
is any.

Another objection/question is why anyone should tolerate W-type in the
first place. As mentioned above, if one can prove indiscernibility induction
without using box induction, then box induction would be justified without
appealing to W type and would be justified solely on ¢. Unfortunately, I am
not able to offer such proof. Let me at least try to get away with it. W-type
is certainly a useful generalisation whether its existence is philosophically
problematic or not. One can justifiably question why anyone should believe
in identity type on the basis of its unintuitive induction principle. But I
neither took box type to encode identity, nor box induction to encode path
induction. Box induction is a result of box type being an instance of W-type
and I only use it to prove indiscernibility induction. Think it as an auxiliary
line, nowhere did I claim box induction exists or being real, it is at most
used as a tool. The box induction principle in the conclusion of the argu-
ment is based on indiscernibility induction whose meaning is significant due
to Curry-Howard correspondence, not due to box induction. If my reader
pays close attention, she will notice that the above argument also relies on
that aJb implies ¢(a,b) and thus she can accuse me of sneakily using “box
type is identity”. The accusation would make sense if only something thing
close to identity can imply indiscernibility up to WW. But then I do not even
need to bother with steps 3 and 4 because I would have something even
better — box type encodes identity. Also, I do not think that only some-
thing resembling identity can imply indiscernibility when indiscernibility is
only up to a scope of information. For example, (R,|-|) and (R, 2| - |) are
topologically indistinguishable but different as metric space. If this example
is not convincing because metric spaces and topological spaces can always
coexists at the same universe level, consider the smallest universe consisting
0, then any two types in this universe are equivalent hence box each other
under univalent axiom and hence are indiscernible; but are they all really
the same, for example even ¢(0 x 0,0) in this barren universe only freely
generated by 0, it is still controversial to claim that O x 0 and O are the
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same type.

My reader may also note that the box induction obtained as the result of
the above argument is not path induction verbatim. Given a type family
indexed by identity/box type and c : Hv(a,reﬂa), path induction should

a
give us a function f such that f(a,refl,) = c(a), but box induction as we
argued only gives us ¢(f(a,refly), c(a)). T do not think this is a problem for
me because in subsequent sections, I would only use the box/path induction
to define functions without using the judgemental equality f(a,refl,) = c¢(a).

To end this section, I stress that the whole argument is to justify box
induction using indiscernibility; the argument is not about whether or not
box type encodes or approximates identity. Thus one can freely decide
whether identity type is identity without contradicting the above argument.

3.5 Identity type and univalent axiom only as transporter

In this section I develop a neutral account of box/identity type barring
the differences between classical mathematics and intuitionism for now. To
avoid unintentionally use intuition about identity, I will continue to use box
notations.

Assuming that box induction is justified, the transport function can be
defined according to section 3.1.2. For any type family £ indexed by «
and a box p : alJd’, the type of transportg is B(a) — B(a’) and the type

of transportjf,1 is B(a’) — B(a). The transport function states that if a

boxes a’, then given a proof of 3(a), not only do we know that 3(a’), but
we have a corresponding proof of it. With univalent axiom, given a proof of
a theorem about «, not only do we know a corresponding theorem of 3, we
actually know a proof of 8 as long as « and 3 are equivalent. My reading
of box type is that the main purpose, if not the only purpose, of box type
is to define functions like transport and ap. These function with univalent
axiom would provide an instrument for mathematicians no matter what
their positions of philosophy of mathematics are as long as their positions
can make sense of Curry-Howard correspondence. Then the principal worry
is that since I have not given box type any meaning at all, why one should
believe that transport actually preserves proofs.
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Given the success of HoTT translating a large chunk of mathematics, for
all the positions of philosophy of mathematics in which a proof in set theo-
retic foundation is acceptable at face value or can somehow be transcribed
to be acceptable, a corresponding proof in HoTT can be accepted as face
value or can somehow be transcribed to be acceptable. This claim is not
radical, because it is essentially claiming that HoTT is a sufficiently capa-
ble language to write mathematics and this can be demonstrated by many
mathematical theories already formalised in HoTT. Then, independent of
one’s position of philosophy of mathematics, she should accept a term of
type a corresponds to a proof of some proposition encoded by « in HoTT
because of Curry-Howard correspondence. Thus, independent of one’s posi-
tion of philosophy of mathematics and what box type actually is, as long as
box induction is justified, the information conveyed in the type of transport
under Curry-Howard correspondence defined using box induction should be
accepted. And the type information under Curry-Howard correspondence,
tell us that transport indeed transport one proof to another. Similarly for
the univalent axiom, since all it does it to turn an equivalence between types
into boxes between types, univalent axiom under this reading should not be
understood as equating or identifying types, it is at most relating types by
boxes. Thus by not giving box type any specific meaning, one can enjoy the
convenience of univalent axiom without worrying univalent axiom’s claim
between identity and equivalence. Since in this reading, box/identity type
is not given any meaning and hence does not necessarily encode true iden-
tity, I should explain how this reading can make sense of uniqueness claim
which requires identity to make sense of. For example, under this reading,
the group theoretic claim that there is one and only one identity element in
a group would become there is a specified term of a group such that all other
group satisfying such and such property will box that specified term. This
sound nothing like a uniqueness claim for 0 + 0 and 0 are the same identity
element because 0 + 0 = 0 but merely that 0 + 0LJ0 does not convince me
that they should be counted as the same, and indeed that is the point of
box notation. I propose the solution to be that 0 4+ 000 implies ¢(0 + 0,0)
so that a uniqueness claim should be understood as a claim of indiscerni-
bility up to a maximal universe. I have argued that [J implying ¢ does not
necessarily force [ to convey meaning similar to identity and, even if [J
implying ¢ indeed forces 1 to be somewhat like the real identity, it would
be to my advantage in section 3.4. Similarly a < b would be interpreted as
that a + something is indiscernible from b in the sense of ¢«. Then one might
ask, why we should bother with box type anyway, it sounds like ¢ does all
the work. The first reason is because box type is needed (at least before I
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find a better proof) to justify indiscernibility induction. The second reason
is because ¢ has a fixed meaning but [J in this reading does not, so if one
actually thinks that [J encodes identity, she is free to adopt so but she may
or may not think ¢ as identity; so box type gives a little bit more wiggle
room for interpretation.

Similarly, the univalent axiom should also not be interpreted as identifying
or equating types in any strong sense. I am not claiming that equivalence
introduced in section 3.2 is without meaning. Equivalence is encoded by bi-
invertibility which asserts a function f with functions g, h such that go f(a)
always boxes a and f o h(b) always boxes b. Given boxes as proof transport
interpretation, equivalence asserts functions f, g, h such that a proof involv-
ing g o f(a) can always be transported to a corresponding proof involving a
and a proof involving f o h(b) can always be transported to a corresponding
proof involving b. Univalent axiom then asserts that equivalence is equiv-
alent to box type. Even though under this reading, the univalent axiom
does not make any significant claim between types, it still gives a function
ua which takes an equivalence and produces a box. We are just not giving
any meaning to the box produced by ua. Given an equivalence e between
a and 3, ua(e) is a box such that proofs about « can be transported to
corresponding proofs about . This is coherent with box type only as proof
transporter: an equivalence e from « to 5 gives us the ability to transport
proofs about a term of « to proofs about a term of 8 pointwise; and ua(e)
gives us the ability to transport proofs about a to proofs of 3 globally.

Since I am developing an instrumentalist account of HoTT, I will exhibit
why one should believe proofs in the sense of HoTT corresponds to or is not
very different from our pre-theoretic notion of proof. A pre-theoretic notion
of proof is a series of steps of reasoning from some premises where each
step follows from some justifiable or intuitive rules. A proof in HoTT is a
term of some type and terms are built by applying constructor, elimination
and induction rules and functions to already built terms. Most construc-
tor and elimination rules (induction rules respectively) behave like logical
rules (induction principle for the corresponding mathematical objects) under
Curry-Howard correspondence so that a term can be interpreted as applying
different logical rules sequentially as well. Since HoTT is often implemented
in a computer language, a proof in HoTT often appears to be very different
from a proof in ordinary sense, but the difference is often only in appear-
ances — a proof written in a foreign script is a proof nonetheless. Under
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my reading of HoTT, a motivation to use HoTT is that it automatically
transports a proof of a theorem about some type to a proof of a theorem
about all other equivalent types, i.e. we get theorems and proofs for free.
But one might argue that in other foundation like ZFC, theorems can also
be transported, for example cyclicity of group is preserved under group iso-
morphism. I think there are at least two advantages of HoTT over ZFC in
these cases:

1. In ZFC, it is not always clear when properties are structural or pre-
served under isomorphism. Consider again (R, +,0) and (R, x, 1),
even though they are isomorphic as groups, their (most obvious) topol-
ogy is different. In HoTT, if a proof of theorem about topology of
(R, +,0) is transported to (R, x,1), the proof and theorem would
be automatically about the topology induced by the group isomor-
phism. Of course, HoTT will not prevent anyone from making these
mistakes, the claim is that transport in HoTT is a rigorously defined
proof transporter while “preserved by iso/homeo/diffeo/...morphism”
is a term tending to be glossed over. If one is to transport a proof
about topology of the additive group, the transported proof would not
be about the default topology of the multiplicative group but about
the corresponding topology transported to the multiplicative group.
This is not to say ZFC must be inferior in this perspective for these
mistakes/ignorance (if anyone is making them) are made by us and
not intrinsic to ZFC. Since HoT'T is often implemented as a computer
system, if anyone is indeed transporting a non-structural property,
HoTT would complain. However, HoTT is not magical in the sense
that it would save us from ever mistaking a structural property from
a non-structural one, for if a property is structural, then its struc-
turalness is often part of definition and hence a proof must be pro-
vided if it is formalised properly. This will only sounds cumbersome
to mathematicians, but for a careless ZFC practitioner, this will save
her from thinking that a theorem about the standard topology of a
multiplicative group is proved because a similar theorem is proved for
the standard topology of a additive group even if the two groups are
group theoretically isomorphic. Thus, in this respect, HoTT is often
correctly being accused that all trivial things has to be proved. As a
defence, if it is indeed trivial, it would not be very difficult to write it
down anyway and most computer version HoTT has some automation
built-in.

2. transport can also transport constructions due to proof relevancy.
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For example, transport not only tells us deffeomorphic manifolds
have the same cohomology, it also transports a sequence computing
cohomology of one manifold to another sequence computing that of
the other deffeomorphic one. Thus not only two deffeomorphic mani-
folds has the same cohomology, if we have a sequence to compute one
cohomology, we automatically get a corresponding sequence via trans-
port. Again, I am not claiming that ZFC foundation is not able to
do this, these kind of practice is often only quickly mentioned under
the phrase “similarly”. Admittedly, sometimes the only purpose of a
construction is to prove the theorem and once the theorem is proved,
constructions used in the proof tend to be forgotten in these cases.
And if one unfolds the construction thus transported, it would just
be applying the structural preserving map and/or its inverse to the
original construction which is what one would expect “similarly” to
mean anyway. Thus, one can object that even if transport can trans-
port constructions, its usefulness is still doubtful. Still, I think even
if constructions are ad hoc, free ad hoc constructions are still not a
harmful product and transport gives a systematic meaning of “sim-
ilarly”, namely if one unfold the transported construction, she will
see how similar they are.

Another motivation to use HoTT is higher inductive types which can
often help with constructions via quotients and thus saving proofs of well-
definedness. I will use construction of integer and integer addition as an
example. A higher inductive type is an inductive type with some pre-
determined boxes/paths. For example, integer in HoTT can be defined as
a type with two constructor pos : N — Z and neg : N — Z and a box/path

z: pos(O)eg(O). Then the subtraction function - —- : N - N — Z
can be defined via pattern matching by 0 — n := neg(n), n — 0 := pos(n)
and succ(n) — succ(m) := n — m. To check this definition makes sense,

one need to check this definition respects the pre-determined box z, i.e.
0—0 = pos(0) and 0 — 0 = neg(0) but z : pos(O)neg(O). Then in-
teger addition - 4+ - : Z — Z — Z can be defined by pos(n) + pos(m) :=
pos(n+ym), neg(n)+neg(m) := neg(n+ym), pos(n)+neg(m) := n—m and
neg(n)+ pos(m) := m —n. To see this definition makes sense, one needs to
check that pos(0) + pos(0)| Z pos(0) + neg(O)eg(O) + pos(O)neg(O) +
neg(O), and all boxes are just true by definitions of - 4+ - and/or - — -
and/or z : pos(O)eg(O). All the checks of well-definedness are almost
mindless, and if one is defining this on a computer HoTT, these are au-
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tomatic. And this does not cost the intuitiveness of definition — integers
has two copy of natural numbers, a positive copy and a negative copy such
that both zeros are equal while integer defined as a higher inductive type
encodes exactly this except that both zeros box each other hence are in-
discernible in the sense of ¢. In contrast, in ZFC, Z can be defined as
N x N/ ~ where (n1,m;) ~ (ng,ma) <= n3+ me = ng2 + mp and
[(n1,m1)]~ + [(n2, m2)]~ := [(n1 + n2, m1 + ma2)|~. To check this definition
makes sense, one need to check

e ~ is an equivalent relation;

o if (n1,m1) ~ (n7,m}) then [(n},m})]~ + [(n2,m2)]~ = [(n1,m1)]~ +
[(n2, m2)]~;

o if (n2,m2) ~ (nh,my) then [(n1,m1)]~ + [(ng, ms)]~ = [(n1,m1)]~ +
[(n2, m2)]~.

To check these are by no means hard, but it is not as mindless, because
commutativity and associativity has to be invoked now. Perhaps there are
clever way to encode integer in ZFC such that well-definedness check would
be more mindless, but that would not be as natural as N x N/ ~. One can
complain that this is not really fair to ZFC theorists for in ZFC, integers
can also be defined axiomatically as the structure such that there are two
injections from N such that the two injection agrees on 0. The only reason
that ZFC theorist constructs integers the harder way is because a concrete
representation of integer can be obtained via the harder way. However, ZFC
theorist must construct a concrete representation of integers because only
then she will know that the axiomatic definition is not void/inconsistent.
However, all higher inductive types can be justified to be consistent system-
atically albeit the justification is much harder than construction of integer.
Thus, as long as an axiomatic description can be written as a higher in-
ductive type, we would know the description is consistent. This includes
more than integers, higher inductive types can also encode shapes natu-
rally, for example the circle S! is a type with a single constructor o : S*
and a box/path circle : oJo. Note that without the box circle, Stis
the unit type. So the possibility of non-trivial boxes/paths gives HoTT’s
unique ability of defining higher inductive types. Other examples include
doughnut shapes etc. Thus even if ZFC theorists can provide an axiomatic
definition for each shape, they need a concrete representation in each case so
that they can know that the shape is not void. Of course, I am not claiming
these concrete representation is hard, the point is that as long as one accepts
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the consistency of higher inductive type, the consistency of the description
captured by a higher inductive type is automatic.

Now, I need to justify higher inductive types are compatible with my
reading of box/identity type as only proof transporter. The main worry is
that boxes/paths postulated when defining a higher inductive types must
carry meaning, otherwise the higher inductive types could not encode the
desired mathematical object, for example z : pos(0)Cneg(0) must convey
something like that the “positive zero” and “negative zero” are the same
so that the integer type actually encodes the mathematical object integers.
Like before, when we do need a meaning to be attached to boxes/paths,
we opt to use indiscernibility up to W implied by boxes/paths. So circle
postulates that other than the indiscernibility implied by i : olJo, there is
another sense in which o is indiscernible from itself, namely circle.

To summarise this section, once box induction can be justified without
appealing to box encodes or approximates identity, we could define trans-
port function without appealing to meaning of box types. I argue that
since the way in which a term is built in HoTT resembles our concept of
proof, under Curry-Howard correspondence, the transport function indeed
transports one proof or construction to a corresponding proof or construc-
tion. This provides a motivation of using HoTT, not because ZFC does not
have “proof transporter”, but because transport function in HoTT is rig-
orously defined and, since HOTT is often implemented on a computer, one
cannot “transport wrong properties”, for example transport a topological
property over groups. Another motivation is higher inductive types, i.e. in-
ductive types with some specified boxes/paths. Higher inductive types can
make the process of checking well-definedness easier or even automatic; and
higher inductive types can be used to encode shapes. Since throughout the
argument, box types are never given any meaning, when one indeed need an
interpretation or explanation of box type to justify that a type can convey
some information, she could use indiscernibility (up to W) implied by box

type.

Another point is missing, HoTT is constructive but mathematical prac-
tice, at least classically, is not. To claim this account provides a neutral tool,
I need to either argue that constructivism being forced upon is a feature not
a bug, or that my account of HoTT is compatible with traditional math-
ematical practice in some sense. In the next section, I choose the second
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route.

HoTT without true identity Under my reading, in HoTT, there would
be no true identity type but only box type without any significant meaning.
This does not concerns me because I am proposing to view HoTT as an
instrument, at least for mathematicians who can accept Curry-Howard cor-
respondence. If I am successful, HoTT under my reading should not force
any ontological commitment upon its user and any mathematician using
HoTT should be able to retain their own notion of identity.

4 Can HoTT be made compatible with classical
mathematics?

Constructive mathematics, unlike classical mathematics requires proof to
provide a recipe of construction; for example a proof of existential claim
should give us a method of actually producing a mathematical entity with
some desired properties; a proof of disjunctive claim should enable us to
actually determine which of the disjunct is true. Thus, the law of excluded
middle, or equivalently the law of double negation elimination and axiom
of choice are not assumed in constructive mathematics. Because of this,
many mathematicians are reluctant to practice constructivism and thus re-
luctant to adopt HoT'T or any other variants of Martin-Lo6f type theory as a
mathematical framework. I do not plan to advocate constructivism because
not all classical theorems are constructively provable. Since I advocate an
instrumentalist account of HoT'T which mathematicians with different phi-
losophy of mathematics view can enjoy, I will argue that HoT'T can provided
a framework similar to a classical one by showing how to incorporate the
law of excluded middle. The axiom of choice can be dealt with the same
techniques. But first, I will take detour to show that constructivism is not
absolutely undesirable either.

A famous example that is often cited to show the necessity of law of
excluded middle is to prove existence of a rational irrational power. The

2
proof is the following: Let a = \/5\[, either a is rational or it is irrational;
if it is rational then there is nothing left to prove; if it is irrational, then

2
av? = V2" = 2 is a rational irrational power. I have two problem with
this example. Firstly, law of excluded middle is not indispensable in this

example, because we can in fact prove constructively that V2" is transcen-
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dental and hence irrational via Gelfond-Schneider theorem, albeit the proof
(constructive version or classical version) of Gelfond-Schneider theorem is
much harder than the proof in the example. Thus, law of excluded middle
in this example just make the example a lot easier, without it, a proof is still
possible. Secondly, there is even an easy constructive proof of existence of
rational irrational power. /2 is irrational and 2logy 3 is irrational.® Then

2log, 3
V2R 93210823 _ 3, My objections of this example is not that the law
of excluded middle is not important or should not be assumed. I only refuse
to believe this example can show the importance of the law of excluded mid-

dle. Now let us compare these two proofs, the first proof essentially shows
)

that (assuming the law of excluded middle), either \/ﬁﬂ is rational or

2
\/5\/_ is rational but we still have no idea which one is actually rational;

while the second proof shows that \/§2 82 3 is rational. Although they both
show existence of a rational irrational power in a classical sense, the fist
proof will not actually give us a rational irrational power while the second
proof does. I think the difference between these two proofs illustrates that
constructive proofs are not always undesirable.

Vanilla version of HoTT is indeed constructive because existential claim
(disjunctive claim respectively) is encoded by dependent pair type (coprod-
uct type respectively). Law of excluded middle in HoTT is encoded by

LEM := [Ja + (a — 0).
a:d

Not only is LEM not provable in HoTT, it is actually inconsistent. A proof of
this fact utilises that there is a non-trivial box 2[12 brought by the univalent
axiom. One obvious response is to simply abandon the univalent axiom and
assume LEM as an axiom instead. But for me, this is not a great solution for
at least two reasons. Firstly, even without the univalent axiom, I am not sure
if the rest of HoTT is actually compatible with LEM.? Secondly, consider
approach (a) in which we remove the univalent axiom and assume LEM
assuming that LEM can be consistently added to HoTT in this way, would it
not be a better solution to assume the univalent axiom while restricting LEM
to only some types as long as those LEM-applicable types are rich enough

8Otherwise, log, 3 = %, then 3° = 2% but 3° is odd and (because obviously a # 0) 2

is even, a contradiction. This proof does not involve double negation elimination and it is
constructively acceptable.
1 think/guess higher inductive type might be a potential problem.
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to write mathematics in? Call the latter approach (b). I think the approach
(b) is better because without the univalent axiom, we could not transport
proofs among equivalent types and axiom of function extensionality needs to
be assumed as well. Under box type and the univalent axiom only as proof
transporter reading, the univalent axiom is not a philosophically loaded
axiom to be assumed for it is not assumed to identify or equate any types.
On the other hand, since there is a substantial debate about constructive
mathematics and constructive logic in particular, the law of excluded middle
must be at least a somewhat controversial assumption. Thus if by assuming
the univalent axiom and a restricted version of the law of excluded middle
provided that the restricted version is still rich enough, we can recover all
mathematical practice that is implementable in HoTT with LEM but without
the univalent axiom, then we are achieving the same result with (at most)
the same cost. The expensive part in both ways is the law of excluded
middle but arguably the restricted version is cheaper since it is restricted.
The only concern is that by restricting the law of excluded middle, more
assumptions and/or constructions are needed to write mathematics. This is
not the case because the law of excluded middle can be consistently assumed
for mere propositions and mere propositions can be implemented by a higher
inductive type whose requirement is box type, common to both approaches
(a) and (b). In the following, I will explain what mere propositions are and
why they are sufficient to write mathematics.

If o satisfies the condition that for any a,a’ : a, we have a term of alld’,
then assuming a + (o« — 0) would not lead to inconsistency. Such types are
called mere propositions. Being a mere proposition is formalisable inside
HoTT, it can be encoded as

isProp(a) := H aOd’;
a,a’:a

and isProp is itself a mere proposition. The restricted version of the law of
excluded middle can be encoded as

LEM, := H isProp(a) — (o + (v — 0)).
o

One immediate curiosity/objection against mere proposition under my
reading is “why should behaviour of box type be able to affect whether
or not law of excluded middle should be applied, after all box types are
supposed to not carry any meaning.” This is again because box type implies
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indiscernibility up to WW. Recall that the proof of LEM being inconsistent
with HoTT plus the univalent axiom utilises a nontrivial box 2[12, this
nontrivial box implies that 2 is indiscernible from 2 even if one views 0 : 2
as1:2and 1:2 as0:2. Under my reading, box type does not, in itself,
affect when one can apply law of excluded middle, its implication, namely
indiscernibility leads to inconsistency of the law of excluded middle.

Another objection is that there are essentially only two mere propositions,
0 and 1. Here, I take “essentially” to mean something like that for any mere
proposition ¢, either ¢ ~ 0 or ¢ ~ 1 and hence under the univalent axiom,
either @10 or ¢[J1. If this is what “essentially” means, I do not have problem
with this claim, because ¢[J0 means a proof of ¢ can be transported to a
proof of 0 and vice versa so that ¢ is not provable; ¢[11 means that firstly ¢ is
provable because a term of 1 can be transported back to ¢ and secondly any
proof of ¢ can be transported to 1. The second point is really just a tautology
for from any type «, there is always a — 1, so ¢[J1 just asserts ¢ is provable.
So mere propositions are the types that contains no more information than
inhabitedness/provability. Perhaps it is strange to think that ¢[Ji) whenever
they are both provable or both unprovable mere propositions. But under
my reading, the strangeness can be eased — @[]y means a proof of ¢ can
be transported to a corresponding proof of ¥ and (since also ¥J¢) a proof
of ¢ can be transported to a corresponding proof of ¢; and this is indeed
true, any proof of ¢ can be transported to a proof of ¥ because 1) is provable
and one can just take that proof of v and vice versa. This is of course to
saying that all mere provable mere propositions are trivially provable by
transporting  : 1, because a box/path is needed in order to use transport
and, in this case, the box/path is from an equivalence under univalent axiom
and equivalence between a mere proposition and 1 is not trivial. Similarly,
unprovable mere propositions are not trivially unprovable as well. To make
it easier to accept the notion of isProp(«a), one can think it as the truth
value of the proposition corresponding to «, then if that proposition is true,
isProp(«) is witnessed; otherwise, unwitnessed. And since, if we only care
about whether the proposition corresponding to « is true or not, it would
not matter how its truth is witnessed, thus all terms (if any) of isProp(«)
would not make a difference. Next we demonstrate that mere propositions
are rich enough to write mathematics.

For any type a, we can form the type ||«/|| via higher inductive types with
constructor |-| : @ — ||| and boxes Oy for any z,y : ||a||. Then proposition
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truncation is rich enough to write mathematics in a classical sense. To
illustrate this point, let us assume LEM, and that we truncate everywhere,

most notably Z B(a)

a:x

B(a)” and “a or 87, then all classical logic rules can be recovered, thanks to
the induction principle of proposition truncation which states that for any
type v such that bJb for all b, b : 3, for any function g : @ — 3, there is a
function g : ||| — B such that §(|a|) = g(a) and an auxiliary property about
boxes that we do not really need in this essay. For example, law of excluded
middle will be true by assumption and double negation elimination would
also be true because, in HoTT, it is logically equivalent to the law of excluded
middle and that a “not exists” claim is equivalent to “for all not” is also
provable in a truncated sense. In classical mathematics, if one wants to prove
B from a premise of an existential claim, then one can freely postulated an
entity warranted by that existential claim. If a dependent pair is untruncated
then pr; will also give us an entity to use. But if dependent pair is truncated,
there is no longer a pr; available. But proposition truncation can mimic the
classical behaviour of existential claim as long as (8 is also a mere proposition,
because by the induction principle of propositional truncation, to prove that
B is implied by the truncated existential claim, it is sufficient to prove that g
is implied by the untruncated existential claim. However if £ is not a mere
proposition, then the induction principle is not very useful. This should
not be very surprising, because if § is not a mere proposition, then the type
information of 8 contains more than whether or not /3 is inhabited /provable,
for example if 8 is an untruncated existential claim (i.e. a dependent pair),
then to prove (3, one actually need to produce an entity and a proof of why
that entity has the desired properties. Then generally, a mere existential
claim would not contain enough information, namely a concrete entity to
start with, to produce a concrete entity that 8 requires. This is not to say
to prove an untruncated claim from a truncated claim is never possible, it
is just that the induction principle of proposition truncation will no longer
be helpful.

and ||a + || to mean “there exists an a such that

The last paragraph should be seen as an invitation to truncate everywhere.
Remember that the introduction of proposition truncation is to make the
law of excluded middle and axiom of choice compatible. However, as I have
argued in the example of rational irrational power, the law of excluded mid-
dle is not always necessary and by avoiding the law of excluded middle,
proofs in the end can sometimes be more informative; thus, to truncate ev-
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erything and everywhere is often unnecessarily cutting informations away.
The same is true for the law of double negation elimination, for example in-
stead of assuming a non-emptiness condition, just assume an inhabitedness
condition. But constructivism is not forced upon to any user of HoTT, it
is at most a suggestion; if anyone wants to truncate everywhere then she
is free to truncate everywhere. However, I want to point out that mathe-
matical practice is more like a classical approach mixed with at least some
occasional constructivism. Here are some examples. Most existential claim
in mathematical practice are actually untruncated, for instance, most proofs
of existential claims are actually recipes to produce the desired entity; this
approach can be very accurately captured by dependent pairs. Most claims
with disjunctions are better described as a coproduct type, because most of
time we indeed know which disjunct is true. And it is not very unusual for
mathematician to carefully state that her proof involves axiom of choice or
its consequences so that, with care, constructive part can be separated from
classical counterpart.

5 Conclusion

In this essay, I develop an alternative neutral reading of HoTT so that
mathematicians with philosophy of mathematics standpoint other than struc-
turalism can use. To achieve this, I argue to not interpret identity type as
encoding or approximating identity; instead, view it as meaningless, unin-
terpreted type from which one can derive indiscernibility induction. Using
indiscernibility induction, one can justify a variant of uniqueness principle of
(uninterpreted, meaningless) identity type and substitution salva veritate.
Combining these two lemmas, the induction principle of identity type (path
induction) can be justified. Then using path induction, I develop the account
of identity type and univalence axiom merely as only proof transporter.

A Logic in HoTT

A.1 Function, Dependent Function, Implication, Universal
Quantifier

Function type If o:U;, 3 : U; are two types, then there is a type called
function from « to 8 denoted by o — B : Upax(i ), 1-€. the type so formed
lives in a universe large enough to contain both a and 5. In this case, «
is referred to as the domain and ( as the codomain. A term of this type
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is given by a — b where a is a variable occurring in b so that whenever
every occurrence of a in b is replaced with a term z : «, the resulting
expression is a term of 5. This process is denoted as (a +— b)(z), or f(x) if
the function a — b is given a name f, this process is also called the eliminator
of function type. Any function f is judgmentally equal to x — f(x) and
any two functions are judgmentally equal if they are alpha-equivalent, i.e.
all the same except for variable renaming without clashing, for example
x—x+1:N—Nand y+— y+1:N—= N are judgmentally. Judgemental
equality is denoted by - = -. Judgemental equality is equality by definition.
Since domains and codomains can be any type, they can be function types
as well. This provides us with the facility of defining functions with more
than one inputs — f := a — (8 — 7) is a function which upon receiving
a : a gives another function f, := f(a) : B — 7.

On the logical side, function type behaves like material implication. To
prove A = B is to prove B under the assumption of A. By previous
paragraph, this is equivalent to constructing a function impy p : a — S
because imp 4 p upon receiving any term a : « gives a term impy g (a) : B,
i.e. given any a as a witness or proof of proposition A, imp4 g(a) is a witness
or proof of proposition B. This is the = introduction rule in logic. The
eliminator of function type serves as modus ponus.

Dependent function type The codomain of a function type is always
fixed, thus dependent function is introduced as a generalisation of function
type. The codomain of a function type will vary according to its input. A
family of type indexed by a is a term 8 : « — U, i.e. for any term a : a,
B(a) : U is a type. For a and 3, the dependent function type H B(a) (or
(a:q)

Hﬁ) can be formed.!’ A term of H B(a) is of the form a — b where a
a (a:cx)

is a dummy variable contained in b such that after every occurrence of a
is replaced with a term z : «, the results would be a term of type [B(z).
Exactly like function type, for any dependent function f, f = a +— f(a) and
two dependent functions are judgmentally equal if they are alpha-equivalent.

1%alternatively, one can write this as (a : o) — f(a), this notation reminds one that the
behaviour of dependent function type is similar to that of function type and, in particular,
if 8 is a constant family, the notion of dependent function type collapse into ordinary
function type.
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On the logical side, 8 can be thought as a family of proposition indexed

by what corresponds to a. A term f of type H B(a) corresponds to a proof
a:A

of Va : A, B(a), because for any a : a, f(a) izvitiless B(a) hence corresponds

to a proof of B(a). This corresponds to universal quantifier introduction

rule. For elimination rule, just observe that if under the assumption that

Va : A,B(a) and an a : A, one can assume a term f : Hﬂ(a) and a : «

a:x

hence f(a) corresponds to the proposition B(a).

A.2 Zero, Negation

The zero type (denoted as 0) is an instance of inductive types in HoTT.!
To specify an inductive type, constructors, eliminators and if any, compu-
tation rule and uniqueness rule need to be specified. If « is an inductively-
defined type, its constructors are to specify how its terms are constructed
and eliminators are to specify how a function from « can be introduced.
Computation rules are to specify how constructors and eliminators are re-
lated. In the case of 0 there is no constructors so that no terms of type O
can be constructed. The elimination rule states that given any type «, there
is a function !, : 0 — «.

On the logical side, 0 corresponds to the “canonical” false proposition.
This is because false proposition should not be witnessed (at least not con-
sistently). The eliminator of 0 is ex falso — any proposition A is derivable
from a false proposition, !, : 0 — « witness this. Then o — 0 corresponds
to the proposition —A.

A.3 Product, Dependent Pair, Conjunction, Existential quan-
tifier

Product of o and 3 is defined inductively with a constructor (-,-) : o —
(B — a x B), i.e. given any a : a,b : 3, one has (a,b) : a x f. The first
elimination rule (or the recursor) is as following: to construct a term of
type f : a x 8 — =, it suffices to construct g : @« — S — 7 such that
f((a,b)) = g(a)(b). More formally, there is recoxg : H(a =B =) =

y:U
(ae x 8 — 7y) such that recox5(7)(9) := ((a,b) — g(a)(b)). For example, one

"this essay will not cover the general syntax of inductive type and its variant in any
detail, for details see for example chapter 5 of [13]
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can form pry := recoxg(a)(a = (b— a)) : a x B — «a, and similarly pry :=
recqaxg(B)(a + 13), we often invoke recursor implicitly to define a function
via “pattern matching” (a,b) — ---. This is sometimes called uncurrying a
function. The other elimination rule (or the inductor) states that if v : a x

8 — U is a family of types then to construct a dependent function H v(x),

T:aX
it suffices to construct a dependent function H H v((a,b)). More formally,
a:a b:fB
indocs: [ (TIT]20@o) | = [ I 7).
y:axf—U \ a:a b3 z:axf

such that indx5(7)(9)((a, b)) := g(a)(b). Note that if v is a constant family,
then the inductor collapse into the recursor. Similar to the recursor, we
can implicitly using the inductor to define functions via pattern matching
(a,b) — ---. By this eliminator, in the rest of this paper, the notions of
f((-,+)) and f(-)(-) would be dealt not with care anymore, we simply write

On the logical side, product « x 8 corresponds to A A B, because to prove
AN B, one provides a proof of A and provides a proof of B; this is equivalent
to provide a term a : o and b : 5 and or equivalently (via constructor (-, -)
and functions pr;,pry) a term (a,b) : a x . Then the constructor (-,-)
corresponds to conjunction introduction rule while pr; (respectively pry)
corresponds to conjunction left (respectively right) elimination rule.
Dependent pair'? For a family of type 3 indexed by «, the product type
can be generalised to dependent pair type denoted by Z B(a) or Z B3,

(a:0) @
The constructor is
('7‘) : H H Zﬁ(a)a

(a:0) (b:B(a) (aza)

2we do not call it dependent product because dependent product often refers to de-

pendent function because of the H sign in its notation, nor do we call it dependent sum
despite the Z sign in the notation because sum type is another kind of type, see section
A4

13alternatively, one can write it as (a: a) x B(a) or even, provided clear context, o x 3
to remind the similarity between product type and dependent pair
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that is, for any term a : o and term b : (a), a term (a,b) : Zﬁ(a) can be

constructed. The corresponding recursor is

recza[;:n Hﬁ(w)—)’y — Zﬁ(ff) -
) (zre)

YU \(z:«

such that recs~ 5(v, 9, (a,b)) := g(a)(b). Or one could invoke the eliminator
implicitly by defining a function via pattern matching (a,b) — ---. For

example pry((a,b)) = a : Zﬁ) — «, but to define pry, we need the
«

inductor:

indzagl H H ]J)V((avb)) — H ’}/(.T)
a:a b:B(a

VDo B—=U xy, B

such that indy~ 5(v,9, (a,b)) = g(a)(b). We want pr, : H B(prq(z)),
(@324 B)

thus pry := indy~ 4 (= B(pry (x),a Lg)), ie. pro((a,b)) = b if we

are defining functions via pattern matching.

On the logical side dependent pair type can be roughly translated in to
an existential claim. Let B be predicate on A, then to prove Ja : A, B(a),
one need to exhibit some a : A then prove that B(a); this corresponds
to construct a term a : « such that S(a) has terms, equivalently via the
constructor (-,-) and the recursor and inductor to construct a term (a,b) :

>

A.4 Coproduct, Disjunction

The sum (or coproduct) of a and 8 written as a+ 8 has two constructors
inlo4p : @ = a4+ f and inrgyg : B — o+ B. The recursor states that to
construct a function of type f : a + 8 — 7, it suffices to have a term g; :
a — v and g, : B — 7, then f(inla4s(a)) = gi(a) and f(inra15(b)) = gr(b).
More formally we have:

reCo 4 : H(a —7) = ((B—=7) = (a+5—=7))
y:U
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such that recq45(7, 91, 9r, inla45(a)) = gi(a) and recq+5(7, 91, gr, inra45(b)) =
gr(a). Similarly, the inductor which is just a dependent version of the re-

cursor states the following:

ndoss: ][ (Hwamaw(a») = [ {Ttnrarso) | = | TT v
b:8

v:a+B—=U \a: x:a+f

such that inda+45(7, g1, gr, inla48(a)) = gi(a) and inda45(7, g1, gr, inra4 (b)) =
gr(b). Using the eliminator rules, one is justified to define functions by

pattern matching f(inly4g(a)) := --- and f(inra4g(b)) = --- would be
sufficiently determine a term f:a+ 8 — ---.

On the logical side, the sum type corresponds to forming disjunction. To
prove a disjunction, it suffices to prove either disjunct; this is the disjunction
introduction rule. The constructors of sum type behave similarly — to
construct a term of type a + §, either a term of a or a term of § would
suffice via the constructor inl, g and inr,4 g respectively. To prove another
proposition from a disjunction, one needs to prove that the proposition
follows from each disjunct alone; this is the disjunction elimination rule.
The recursor and inductor behave exactly like this — to construct something
from a term of sum type, one need to have “recipes” for how to construct
that thing from any a : o and from any b : .
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