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Abstract

The objective of this report is to present formalization of some basic theorems
from transcendental number theory with Lean and mathlib in the hope that
it will motivate and inspire other mathematicians, by igniting their curiosity
about interactive theorem proving. The following theorems are formalized:

1. the set of algebraic numbers is countable, hence transcendental number
exists:

1 theorem algebraic_set_countable : set.countable algebraic_set
2 theorem transcendental_number_exists :
3 ∃ x : ℝ, transcendental x

2. all Liouville numbers are transcendental:

1 theorem liouville_numbers_transcendental :
2 ∀ x : ℝ, liouville_number x -> transcendental x

3. α :=

∞∑
i=0

1

10i!
is a Liouville number hence α is transcendental.

1 theorem liouville_α : liouville_number α
2 theorem transcendental_α : transcendental α :=
3 liouville_numbers_transcendental α liouville_α

4. e is transcendental:

1 theorem e_transcendental : transcendental e
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Chapter 1

Overview

1.1 Interactive theorem proving
Around 1920s, the German mathematician David Hilbert put forward a pro-
gramme to seek:

1. an axiomatic foundation of mathematics;

2. a proof of consistency of the said foundation;

3. Entscheidungsproblem: an algorithm to determine if any proposition is
universally valid given a set of axioms.

The second aim were later proved to be impossible by Gödel and his celebrated
incompleteness theorems. Via the completeness of first order logic, the Entschei-
dungsproblem can also be interpreted as an algorithm for producing proofs using
deduction rules. Even without a panacea approach for mathematics, a computer
still bears advantages against a carbon-based mathematician. Perhaps the most
manifested advantage is the accuracy of a computer with which it executes its
command and to recall its memories. Thus came the idea of interactive the-
orem proving — instead of hoping a computer algorithm can spit out some
unfathomable proofs, assuming computers are given the ability to check the
correctness of proofs, so human-comprehensible proofs can be verified by ma-
chines and thus guaranteed to be free of errors. With a collective effort, all
theorems verified this way can be collected in an error-free library such that
all mathematicians can utilise to prove further theorems, which can then be
added to the collection, ad infinitum [Boy+94]. Curry-Howard isomorphism
provided the crucial relationship between mathematical proofs and computer
programmes, more specifically relationship between propositions and types, to
make such project feasible [KK11]. The idea will be explained in section 2 along
with Lean.

The proof of “Kepler’s conjecture1” illustrates and exemplifies the utility of
1the most efficient way to pack spheres should be face centred cubic
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interactive theorem proving. As early as 1998, Thomas Hales had claimed a
proof [Hal98; HUW14], however the proof was controversial in the sense that
other mathematicians even after great effort could not guarantee its correctness.
A collaborative project using Isabelle2 and HOL Light3 verified the proof
around 2014, hence settled the controversy in 2017 [Hal+17]. There is also
Georges Gonthier with his teams using Coq4 who formalised the four colour
theorem and Feit-Thompson theorem where the latter is a step closer to the
classification of simple groups [Gon08; Gon+13]. Additionally, using Lean5,
Buzzard, Commelin, and Massot were able to formalise the modern notion of
perfectoid spaces [BCM20].

1.2 History of transcendental numbers
“Transcendence” as a mathematical jargon first appeared in Leibniz’s 1682 paper
where he proved that sine is a transcendental function in the sense that for any
natural number n there does not exist polynomials p0, · · · , pn such that

p0(x) + p1(x) sin(x) + p2(x) sin(x)2 + · · ·+ pn(x) sin(x)n = 0

holds for all x ∈ R [Bou98]. The Swiss mathematician Johann Heinrich Lambert
in his 1768 paper proved the irrationality of e and π and he also conjectured
their transcendence [Lam04]. It is not until 1844 that Joseph Liouville proved
the existence of any transcendental number and until 1851 an explicit example
of transcendental number was actually given by its decimal expansion:[Kem16]

∞∑
i=1

1

10i!
= 0.11000100000 · · · .

However, this construction is still artificial in nature. The first example of a
real number proven to be transcendental that is not constructed for the purpose
of being transcendental was e. Charles Hermite proved the transcendence of
e in 1873 with a method applicable (with help of symmetric polynomial) to π
in 1882 and later to be generalised to Lindemann-Weierstrass theorem in 1885
stating that if α1, · · · , αn are distinct algebraic numbers then eα1 , · · · , eαn are
linearly independent over the algebraic numbers [Bak90]. The transcendence of
π was particularly celebrated because it immediately implied the impossibility
of the ancient Greek challenge of squaring the circle, i.e. it is not possible to
construct a square, using compass and ruler only, with equal area to a circle.
This question is plainly equivalent to construct

√
π, which is not possible for

otherwise π is algebraic. Georg Cantor in 1874 proved that algebraic numbers
are countable hence not only do transcendental numbers exist, they exist in

2a theorem prover relies extensively on dependent type theory and Curry-Howard correspondence.
3ibid.
4ibid.
5ibid.
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a ubiquitous manner – there is a bijection from the set of all transcendental
numbers to R [Can32; Can78].

In 1900, Hilbert proposed twenty-three questions, the 7th of which is regard-
ing transcendental numbers: Is ab transcendental, for any algebraic number a
that is not 0 or 1 and any irrational algebraic number b? The answer is yes
provided by Gelfond-Schneider theorem in 1934 [Gel34]. This led to some im-
mediate consequences such that

1. 2
√
2 and its square root

√
2

√
2
are transcendental;

2. eπ is transcendental for eπ =
(
eiπ
)−i

= (−1)
−i;

3. ii = e−
π
2 is transcendental etc.

In contrast, none of π ± e, πe,
π

e
, ππ, πe, etc were proven to be transcendental.

It was also conjectured by Stephen Schanuel that given any n Q−linearly inde-
pendent z1, · · · , zn ∈ C, then trdeg (Q(z1, · · · , zn, ez1 , · · · , ezn)/Q) is at least n
[Lan66]. If this was proven, the algebraic independence of e and π would follow
immediately by setting z1 = 1 and z2 = πi with Euler’s identity.
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Chapter 2

Brief introduction to Lean
Lean was developed by Leonardo de Moura at Microsoft Research Redmond
in 2013 using dependent type theory and calculus of inductive constructions
[AMK15]. In this chapter, basic ideas of Curry-Howard isomorphism will be
demonstrated by some basic examples of mathematical theorem expressed in
Lean using dependent type theory.

2.1 Simple type theory
Unlike set theory where everything from basic things like natural numbers to
complex constructions like modular forms is essentially a set, type theory as-
sociate every expression with a type. In set theory, an element can belong to
different sets, for example 0 is simultaneously in N ⊆ Q ⊆ R ⊆ C. However an
expression can only have one type. 0 without any context will have type N and,
to specify the zero with type R we write (0 : R). If a has type α, we write a : α.
By a universe of types we mean a collection of types. Types can be combined
to form new types in the following way:

• let α and β be types then α → β is the type of functions from α to β:
the term of type α → β is a function that for any term of α gives a term
of β. For mathematicians this loosely means that for any two classes α
and β, there is a new class hom(α, β). Sometimes we are not bothered to
give a function a name, we can use the λ notation: the expression (λx :
α, expression) has type α → . . . depending on the content of expression.
For example (λx : N, x+1) : N → N is the function from natural numbers
to natural numbers that adds 1 to any input.

• let α and β be types then α× β is the cartesian product of α and β: the
element of type α× β is an ordered tuple (a, b) where a : α and b : β.

• Let α be a type in universe U and β : α → U be a family of types that for
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any a : α, β(a) is a type in U . Then we can form the Π-type∏
a:α

β(a)

whose term is of the form f :
∏
a:α

β(a) such that for any x : α, f(x) : β(x).

Note that function type is actually an example of Π-type where β is a
constant family of types. For this reason, we also call Π-types dependent
functions. For example if Vec(R, n) is the type of Rn, then

n 7→ (1, · · · , 1)︸ ︷︷ ︸
n times

:
∏
m:N

Vec(R,m)

• We also have dependent cartesian product or Σ-type: Let α be a type in
universe U and β : α → U be a family of types in U , then the Σ-type∑

a:α

β(a)

whose term is of the form (x, y) :
∑
a:α

β(a) such that x : α and y : β(x).

Similarly n, (1, · · · , 1)︸ ︷︷ ︸
n times

 :
∑
m:N

Vec(R,m)

2.1.1 Proposition as type
In type theory, a proposition p can be regarded as a type whose terms are a
proof of p.

Example 1. 1 + 1 = 2 is a proposition. rfl is an element of type 1 + 1 = 2
where rfl is the assertion that every term equals itself.

Example 2. For two propositions p and q, the implication p =⇒ q then can
be interpreted as function p → q. To say imp : p → q is to say for any hp : p we
have imp(hp) : q, or equivalently given any hp, a proof of proposition p, imp(hp)
is a proof of proposition q.

Example 3. If p : α → proposition, the proposition ∀x : α, p(x) can be inter-
preted as a Π-type

∏
x:α

p(x). To prove ∀x : α, p(x), we need to find an element

of type
∏
x:α

p(x); equivalently for any x : α, we need to find an element of type

p(x); equivalently for any x : α, we need to find a proof of p(x).
Similarly, ∃x : α, p(x) can be interpreted as a Σ-type

∑
x:α

p(x). To prove

∃x : α, p(x) is to find an element x of type α and prove p(x), equivalent to find an
element x : α and an element of type p(x) and this is precisely (x, p(x)) :

∑
a:α

p(a).
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Theorems are true propositions. Using the interpretation above, theorems
are inhabited types and to prove a theorem is to find an element of the required
type.

2.2 Lean and mathlib
mathlib is the collection of mathematical definitions, theorems, lemmas built
on Lean. mathlib includes topics in algebra, topology, manifolds and combi-
natorics etc. The following section will briefly explain how to use Lean with
mathlib.

In Lean, new definitions can be introduced with the following syntax:

1 def name (arg1:type1) ... (argn:typen) : return_type := contents
2

3 def name' {arg1:type1} ... (argn:typen) : return_type := contents

return_type is optional when it can be inferred from contents. If an ar-
gument is enclosed by curly brackets instead of round brackets, then when the
definition is invoked the said argument is implicit, i.e. name' a2 ... an where
ai:typei. To explicitly mention the said argument, one needs to use @name'
a1 ... an where ai:typei. One can use “if then else” to introduce a function
whose value depends on the value of the arguments:

1 def name args : return_type :=
2 if (h args)
3 then contents1
4 else contents2
5

6 def name args : return_type :=
7 ite (h args) contents1 contents2

New notations are introduced with the following syntax:

1 notation _`lhs`_ := _rhs_

so that Lean will treat every occurrence of _`lhs`_ as _rhs_ verbatim. For
example notation ℤ`[X]` := polynomial ℤ will replace polynomial ℤ with a
more familiar notation of Z[X].

For any type of α, we can introduce a subtype of α by:

1 def α' := {x : α // property_satisfied_by_x}

An element of type α′ is of the form 〈x, hx〉 where x : α and hx is a proof that
x satisfies the given property.

Theorems or lemmas are introduced with the following syntax:
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1 theorem name (arg1:type1) ... (argn:typen) : content :=
2 begin
3 -- proof of the theorem
4 end

To write a proof understandable to Lean, one needs to use tactic mode. In
Lean, one can use

• proof by induction: if the goal is a proposition about natural number n,
induction n with n IH is to prove the proposition by induction. This
command will change the current goal to two goals. The first is to prove
the proposition for n = 0 and the second to prove the proposition for n+1
with the additional inductive hypothesis IH;

1 theorem awesome_theorem_about_natural_number (n : ℕ) :
propositionn :=↪→

2 begin
3 induction n with n IH,
4

5 a_proof_of_proposition0
6

7 -- (IH : propositionn) is now in context
8 a_proof_of_propositionn+1
9 end

• proof by contradiction: if the goal is to prove proposition H, by_contra
absurdum will add absurdum : ¬H into the current context and turn
the goal into proving false;

1 theorem awesome_theorem : awesome_proposition :=
2 begin
3 by_contra absurdum,
4

5 -- Now (absurdum : ¬ awesome_proposition) is in context and
the goal is to prove falsehood.↪→

6 a_proof_of_falsehood
7 end

• proof in a forward manner i.e. introduce new theorems into the current
context or convert known theorems in the current context to approach the
goal:

– have H := content will introduce a new proposition whose proof
is given by content.
have H : some_proposition will add one more goal of proving
the proposition then introduce the proved proposition to the current
context.
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– If H is in context then replace H := content will change H to (a
proof of) the proposition that content is proving.
replace H : some_proposition will add one more goal of proving
some_proposition and then replace H to the proposition proven.

– If H is in context, simp at H will simplify H by rewriting equalities
1 from its database. This is called a confluent rewrite system. simp
only [h1,…,hn] is to simplify only using h1 … hn.

– rw is for term rewriting. If we have h : lhs = rhs or lhs<->rhs
and another H in context, then rw h at H will replace every occur-
rence of lhs with rhs in H and rw <-h will replace every occurrence
of rhs with lhs in H.
rw [h1, h2,..., hn] at H is the same as rw h1 at H, rw h2
at H,..., rw hn at H.

– The fact that rw and simp change all term occurrences sometimes cre-
ates an inconvenience. If H is in context, conv_lhs at H {tactics}
will confine the scope of tactics only to the left hand side of H; sim-
ilarly conv_rhs at H {tactics} will confine the scope to the right
hand side of H.

– generalise H : lhs = var_name will set var_name to lhs and
add (proof of) the proposition H : lhs = var_name to the current
context.

– If H : ∃ x : type, property_about_x is in the current context,
choose x hx using H will introduce x:type with the assumption
hx : property_about_x to the current context.

– If H : p ∧ q is in the current context, then H.1 is (a proof of) p and
H.2 is (a proof of) q.

– If H : ite h1 h2 h3 is in the current context, then split_ifs at
H will turn the current goal into two goals, the first one is to prove the
original goal with the additional assumption h1 and h2; the second
one is to prove the original with goal with the additional assumption
¬h1 and h3.

• proof in a backward manner i.e. convert or replace the goal so that it is
closer to what is known in context:

– unfold definition is to unfold a definition to what is explicitly
defined when the definition is introduced.

– simp, rw, conv_lhs {tactics} and conv_rhs {tactics} is the
same as above except now they change at goal.

– Given (a proof of) proposition H: h1 -> h2, then apply H will
change the goal of proving h2 to prove h1.

1to be more precise, equalities with @[simp] tag, i.e. lemmas declared in the following syntax
@[simp] lemma lemma_name args : Prop. An example of such lemma would be nat.add_zero
which asserts that ∀n : N, n+ 0 = n.
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– suffices H : some_proposition ask for a proof of the current
goal with additional H, then ask for a proof of H.

– norm_cast converts the type of numbers. For example the current
goal is (x : R) < (y : R) where x and y are of type N, then after
norm_cast the goal will become x < y. This should be simpler
because R in Lean is defined as equivalent classes of Cauchy sequence
of Q while natural number is much easier to work with.

– norm_num solves numerical equalities or inequalities such as 132 <
180 by performing necessary calculation in the rational number.

– ext will convert the current goal with axioms of extensionality. For
example if the goal is to prove equality of polynomial then after ext
the goal would become to prove that every coefficient is equal; or if
the goal is to prove equality of sets of type α A = B, then after ext,
an arbitrary element x of type α will be introduced into context then
the goal will become to prove x ∈ A ⇐⇒ x ∈ B. ext var_name will
force Lean to introduce a new variable under the identifier var_name.

– If the goal is to prove ite h1 h2 h3 (or ite h1 h2 lhs = rhs),
then split_ifs at H will turn the current goal into two goals, the
first one is to prove h2 (lhs = rhs resp.) with the additional as-
sumption h1; the second one is to prove h3 (lhs = rhs resp.) with
the additional assumption ¬h1.

• when the goal is easily provable, one can use the following to finish a goal:

– refl (for reflexive) is used to prove propositions of the form lhs =
rhs when lhs is definitionally equal to rhs. Definitional equality
is more general than two string being literally identical but is less
general than being (canonically) isomorphic. For example

∞∑
i=0

1

2i
=

∞∑
j=0

1

2j

is a definitional equality but

Rn = Func ({0, · · · , n− 1},R)

is not a definitional equality (strictly speaking perhaps not an equal-
ity at all).

– exact H will prove the current goal if the goal is definitionally equal
to H.

– ring will try to prove the current goal using associativity and com-
mutativity of addition and multiplication.

– linarith is used when proving inequality from context. linarith
is semi-automated, so it can work with inequalities with symbols or
variables but only to a degree. If linarith fails, one has to either
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provide linarith with more propositions or use other tactics to
change the goal into something more manageable the use linarith.
linarith [h1, ..., hn] is equivalent to use linarith with ad-
ditional (proofs of) propositions h1 … hn.

– tidy is to ask Lean to try different tactics and finishes the goal if it
possible.

– tauto is used to prove a goal of tautology.

• If there is multiple goals, one can use { } to focus on the first one.

• If the entirety of proof is one line, one can replace begin contents end
with by contents.

For any two propositions p and q, a new proposition can be formed via con-
junction p ∧ q, disjunction p ∨ q, implication p =⇒ q, equivalence p ⇐⇒ q
and negation ¬p; for any type A and family of propositions p : A → proposition
a new proposition can be formed via universal quantifier ∀(x : A), p(x) or exis-
tential quantifier ∃(x : A), p(x).

2.2.1 prove a conjunction
If the goal is to prove a conjunction of the form h1 ∧ h2, split is used. It will
change the current goal to two goals of proving h1 and h2 respectively. Then
the general pattern is

1 theorem how_to_prove_conjunction (h1 : Prop) (h2 : Prop) : h1 ∧ h2 :=
2 begin
3 split,
4

5 proof_of_h1

6

7 proof_of_h2

8 end

2.2.2 prove a disjunction
If the goal is to prove a disjunction of the form h1 ∨ h2, one can use left to
change the goal to prove h1 or right to change the goal to prove h2. Let us
assume h1 is a true proposition :

1 theorem how_to_prove_disjunction (h1 : Prop) (h2 : Prop) : h1 ∨ h2 :=
2 begin
3 left,
4

5 proof_of_h1

6 end
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2.2.3 prove an implication
If the goal is to prove an implication of the form p =⇒ q, one can use intro
hp to add hp:p a proof of p into the context and convert the goal to proving q.

1 theorem how_to_prove_implication (p : Prop) (q : Prop) : p -> q :=
2 begin
3 intro hp,
4

5 proof_of_q
6 end

If the goal is of the form p1 → p2 → . . . pn, one can use intros hp1 … hpn
as an abbreviation of intro hp1, intro hp2,…, intro hpn.

2.2.4 prove an equivalence
An equivalence of the form p ⇐⇒ q is by definition p =⇒ q ∧ q =⇒ p. Thus
split will change the goal to two goals, one to prove p =⇒ q, the other to
prove q =⇒ p. Then use section 2.2.3.

2.2.5 prove a negation
A negation of the form ¬p is by definition p =⇒ ⊥. Thus intro hp will add
hp:p to the current context and convert the goal to proving a falsehood.

1 theorem how_to_prove_negation (p : Prop) : ¬p :=
2 begin
3 intro hp,
4

5 proof_of_falsehood
6 end

2.2.6 prove a proposition with ∀
A proposition of the form ∀a : α, p(a) where α is a type and p : α → Prop can
be proved also using intro x0. This will add an arbitrary x0 : α to the current
context and change the goal to proving p(x0).

1 theorem how_to_proposition_with_universal_quantifier {α : Type} (p
: α -> Prop) : ∀ a : α, p a :=↪→

2 begin
3 intro x0,
4

5 a_proof_of_p(x0)
6 end

If the goal is the form ∀a1 : α1,∀a2 : α2, . . . , ∀an : αn, p a1 a2 . . . an can
be proved using intros a1 a2 … an as an abbreviation of intro a1, intro
a2,…, intro an.
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2.2.7 prove a proposition with ∃
A proposition of the form ∃a : α, p(a) where α is a type and p : α → Prop can
be proved by use x0. This will convert the goal to proving p(x0).

1 theorem how_to_proposition_with_universal_quantifier {α : Type} (p
: α -> Prop) : ∃ a : α, p a :=↪→

2 begin
3 a_construction_of_x0

4

5 use x0,
6

7 a_proof_of_p(x0)
8 end

2.3 An example
To illustrate the above syntax and patterns, an example is presented here of
defining mean value of two real numbers and proving some basic properties
thereof.

1 import data.real.basic
2 import tactic
3

4 noncomputable theory
5 open_locale classical
6

7 def mean (x y : ℝ) : ℝ := (x + y) / 2
8

9 theorem min_le_mean : ∀ x y : ℝ, min x y ≤ (mean x y) :=
10 begin
11 intros x y,
12 have ineq1 : min x y ≤ x := min_le_left x y,
13 have ineq2 : min x y ≤ y := min_le_right x y,
14

15 unfold mean, rw le_div_iff (show (0:ℝ) < 2, by linarith),
16 rw mul_two,
17 apply add_le_add,
18 exact ineq1, exact ineq2,
19 end
20

21 theorem mean_le_max : ∀ x y : ℝ, (mean x y) ≤ max x y :=
22 begin
23 intros x y,
24 have ineq1 : x ≤ max x y := le_max_left x y,
25 have ineq2 : y ≤ max x y := le_max_right x y,
26

27 unfold mean, rw div_le_iff (show (0:ℝ) < 2, by linarith),
28 rw mul_two,
29 apply add_le_add,
30 exact ineq1, exact ineq2,
31 end
32
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33 theorem a_number_in_between :
34 ∀ x y : ℝ, x ≤ y -> ∃ z : ℝ, x ≤ z ∧ z ≤ y :=
35 begin
36 intros x y hxy,
37 have ineq1 := min_le_mean x y,
38 have ineq2 := mean_le_max x y,
39 have min_eq_x := min_eq_left hxy,
40 have max_eq_y := max_eq_right hxy,
41 use mean x y,
42 split,
43

44 { conv_lhs {rw <-min_eq_x}, exact ineq1, },
45 { conv_rhs {rw <-max_eq_y}, exact ineq2, },
46 end

Line 1 makes basic properties of real available to use and line 2 makes all
the tactics we discussed amongst other more advanced tactics available to use.
We add line 4 so that lean would ignore the issue of computability and line 5
so that we can use proof by contradiction2.

We define the mean value of two real numbers on line 7. Then mean3 has
the type R → R → R, mean 1 has the type R → R and mean 1 2 has the type
R.

We can introduce and prove theorems about mean stating that the mean
value of two numbers is greater than or equal to the minimum of the two numbers
but less than the maximum. This is from line 9 to line 31 where

• min_le_left is a proof of the proposition ∀(x y : α),min(x, y) ≤ x where
α is an implicit argument with a linear order. In this case, Lean infers
from context that α is R. Thus min_le_left x y is a proof of min x y
≤ x.

• min_le_right is a proof of the proposition ∀(x y : α),min(x, y) ≤ y In
this case, min_le_right x y is a proof of min x y ≤ y.

• Similarly, le_max_left is a proof of the proposition ∀(x y : α), x ≤
max(x, y) where α is an implicit argument with a linear order. In this
case, le_max_left is a proof of x ≤ max x y.

• Similarly, le_max_right is a proof of the proposition ∀(x y : α), y ≤
max(x, y) where α is an implicit argument with a linear order. In this
case, le_max_right is a proof of y ≤ max x y.

• le_div_iff is a proof that 0 < c → (a ≤ b

c
⇐⇒ a × c ≤ b) where

a, b, c are elements of a type with a linear ordered field structure. So by
rw le_div_iff, the goal would change from min x y ≤ (x + y) / 2
to min x y * 2 ≤ x + y. Since le_div_iff requires the assumption

2Lean by default use constructivism where ¬¬p =⇒ p is not an axiom of deduction. Thus
the law of excluded middle is not by default a tautology.

3mean is not a function R2 → R but a function R → Func(R,R). This is called currying.
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that 0 < c, a new goal to prove that 0 < 2 is created after the original
goal. This goal is proved by the final linarith.

• div_le_iff is proof that 0 < b =⇒ (
a

b
≤ c ⇐⇒ a ≤ c × b) where

a, b, c are elements of a type with a linear ordered field structure. So by
rw div_le_iff the goal would change from (x + y) / 2 ≤ max x y
to x + y ≤ max x y * 2. Since div_le_iff requires the assumption
that 0 < b, a new goal to prove 0 < 2 is created after the original goal.
This goal is proved by the final linarith.

• mul_two proves the lemma that ∀n : α, n×2 = n+n where α is a semiring.
Thus rw mul_two would change the goal of proving min x y * 2 ≤ x
+ y (x + y ≤ max x y * 2 resp.) to min x y + min x y ≤ x + y
(x + y ≤ max x y + max x y resp.).

• add_le_add proves the lemma that a ≤ b → c ≤ d → a+ c ≤ b+ d where
a, b, c and d are elements of an ordered additive commutative monoid.
Since the goal now is to prove min x y + min x y ≤ x + y, by apply
add_le_add, goal will be replaced by two goals of proving min x y ≤ x
and min x y ≤ y. These are exactly ineq1 and ineq2.

15



Chapter 3

Formalisation using Lean

Logistics of the formalisation
There are five main files in this project where

1. small_things.lean formalised results about the trivial embedding of
Z[X] ⊂ R[X] and manipulation of inequality in real numbers common to
all three parts;

2. algebraic_over_Z.lean formalised countability of algebraic numbers
with help of Schröder-Bernstein theorem.

3. liouville.lean formalised Liouville’s theorem and a construction of a
Liouville’s number;

4. e_trans_helpers2.lean formalised some results about differentiation
and integration. Especially the formalisations of

dn

dxn
uv =

n∑
i=0

(
n

i

)
diu
dxi

dn−iv

dxn−i

where u and v are differentiable function from R to R and∫ t

0

et−xf(x)dx = et
m∑
i=0

f (i)(0)−
m∑
i=0

f (i)(t)

where f(X) ∈ Z[X];

5. e_transcendental.lean formalised transcendence of e by assuming the
algebraicity of e which resulted in two contradictory bounds using the
results from e_trans_helpers2.lean.
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3.1 Countability argument
The main caveat in this part is the internal specification of mathlib. A real
number x in Lean is algebraic over Z if and only if there exists a non-zero
polynomial p(X) ∈ Z[X] such that p is in the kernel of the unique Z-algebra
homomorphism Z[X] → R given by X 7→ x.

1 ∃ (p : ℤ[X]), p ≠ 0 ∧ ⇑(polynomial.aeval ℤ ℝ x) p = 0

Here the Z-algebra homomorphism is polynomial.aeval ℤ ℝ x. ⇑ is to con-
vert the homomorphism to a function applicable to p. The reason that a con-
version is necessary is because an algebra homomorphism contains more infor-
mation than a function, it is a structure containing the map and other fields
containing (proofs of) the properties of algebra homomorphism. However in
polynomial library of mathlib, the definition of root is as following :

1 def is_root (p : polynomial R) (a : R) : Prop := p.eval a = 0

Thus the first part of this formalisation is to unify the two evaluation meth-
ods – denote ιx to be the unique Z-algebra homomorphism ιx : Z[X] → R given
by X 7→ x then for all polynomial p(X) ∈ Z[X] and for all x ∈ R, evalp(x) = ιxp:

1 -- the trivial embedding Z[X] ⊆ R[X]
2 def poly_int_to_poly_real (p : ℤ[X]) : polynomial ℝ :=

polynomial.map ℤembℝ p↪→

3

4 def poly_int_to_poly_real_wd (p : ℤ[X]) :=
5 ∀ x : ℝ, polynomial.aeval ℤ ℝ x p = (poly_int_to_poly_real

p).eval x↪→

6

7 theorem poly_int_to_poly_real_well_defined
8 (x : ℝ) (p : ℤ[X]) : poly_int_to_poly_real_wd p :=
9 begin
10 proof_omitted
11 end

Source Code 3.1: unifying two ways of evaluation
For any p ∈ Z[X], we can define the set of roots to be {x ∈ R|evalp(x) = 0}

or {x ∈ R|ιxp = 0} where the former is builtin as ↑(poly_int_to_poly_real
p).roots1 and the latter is defined as line 1 in source code 3.2. By line 7 in
source code 3.1, the two sets must be equal, hence they have finite cardinality
for a nonzero polynomial:

1_.roots in fact has type finset ℝ. The type finset is a set with a proof of finite
cardinality. Here ↑ is used to convert a finset to set by discarding the proof of finite cardinality.

17



1 def roots_real (p : ℤ[X]) : set ℝ :=
2 {x | polynomial.aeval ℤ ℝ x p}
3

4 theorem roots_real_eq_roots (p : ℤ[X]) (hp : p ≠ 0) :
5 roots_real p = ↑(poly_int_to_poly_real p).roots :=
6 begin
7 proof_omitted
8 end
9

10 theorem roots_finite (p : ℤ[X]) (hp : p ≠ 0) :
11 set.finite (roots_real p) :=
12 begin
13 proof_omitted
14 end

Source Code 3.2: two ways of defining roots
We define the set of all algebraic numbers over Z to be

1 def algebraic_set : set ℝ := {x | is_algebraic ℤ x}

To investigate the countability of algebraic_set, we compare it with⋃
n∈N

⋃
p∈Z[X]
p ̸=0

deg p<n+1

{x ∈ R|ιxp = 0}. (3.1)

To this end, we introduce some types of interest:

1 notation `int_n` n := fin n -> ℤ
2 notation `nat_n` n := fin n -> ℕ
3 notation `poly_n'` n := {p : ℤ[X] // p ≠ 0 ∧ p.nat_degree < n}
4 notation `int_n'` n := {f : fin n -> ℤ // f ≠ 0}
5 notation `int'` := {r : ℤ // r ≠ 0}

where 〈m,hm〉 is an element of fin n if and only if m is a natural number
and hm is a proof of m < n. Then fin n is the type of only n elements. Thus

• int_n n is Zn;

• int_n' n is Zn − {(0, . . . , 0)};

• int' is Z− {0};

• nat_n n is Nn;

• poly_n' n is the type of non-zero integer polynomials with degree less
than n.

18



Then Z ' Z− {0} by the bijective function s : Z → Z− {0}:

m 7→

{
m if m < 0

m+ 1 if m ≥ 0

1 def strange_fun : ℤ -> int' :=
2 λ m, if h : m < 0
3 then ⟨m, by linarith⟩
4 else ⟨m + 1, by linarith⟩
5

6 theorem strange_fun_inj :
7 function.injective strange_fun :=
8 begin
9 proof_omitted
10 end
11

12 theorem strange_fun_sur :
13 function.surjective strange_fun :=
14 begin
15 proof_omitted
16 end
17

18 theorem int_eqiv_int' : ℤ ≃ int' :=
19 begin
20 apply equiv.of_bijective strange_fun,
21 split,
22 exact strange_fun_inj,
23 exact strange_fun_sur,
24 end

Source Code 3.3: Z ' Z− {0}
Then we prove that for all non-zero n : N, non-zero integer polynomials of

degree less than n bijectively correspond to Zn − {(0, . . . , 0)} via the function:
p 7→ z where the i-th coordinate of z is the i-th coefficient of p.

1 def identify (n : nat) : (poly_n' n) -> (int_n' n) :=
2 λ p, ⟨λ m, p.1.coeff m.1, a_proof_z_is_not_zero⟩
3

4 theorem sur_identify_n (n : nat) (hn : n ≠ 0) :
5 function.surjective (identify n) :=
6 begin
7 proof_omitted
8 end
9

10 theorem inj_identify_n (n : nat) (hn : n ≠ 0) :
11 function.injective (identify n) :=
12 begin
13 proof_omitted
14 end
15

16 theorem poly_n'_equiv_int_n' (n : nat) :
17 (poly_n' n.succ) ≃ (int_n' n.succ) :=
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18 begin
19 apply equiv.of_bijective (identify n.succ),
20 split,
21 exact inj_identify_n n.succ (nat.succ_ne_zero n),
22 exact sur_identify_n n.succ (nat.succ_ne_zero n),
23 end

†: n.succ means n+ 1.

Source Code 3.4: non-zero integer polynomials with degree less than n has the
same cardinality as Zn − {(0, . . . , 0)}

Then we define two injective functions F : Zn+1 → Zn+1 − {(0, . . . , 0)} and
G : Zn+1 − {(0, . . . , 0)} → Zn+1 by:

F (m0, . . . ,mn) = (s(m0), . . . , s(mn))

G(m0, . . . ,mn) = (m0, . . . ,mn)

where s : Z → Z − {0} is defined previously. By Schröder-Bernstein theorem,
there is then a bijection Zn+1 → Zn+1 − {(0, . . . , 0)} and thus Zn+1 ' Zn+1 −
{(0, . . . , 0)}:

1 def F (n : nat) : (int_n n.succ) -> (int_n' n.succ) :=
2 λ f, ⟨λ m, (strange_fun (f m)).1,
3 a_proof_of_(s(m0), . . . , s(mn))_non-zero⟩
4 theorem F_inj (n : nat) : function.injective (F n) :=
5 begin
6 proof_omitted
7 end
8

9 def G (n : nat) : (int_n' n.succ) -> (int_n n.succ) :=
10 λ f m, (f.1 m)
11 theorem G_inj (n : nat) : function.injective (G n) :=
12 begin
13 proof_omitted
14 end
15

16 theorem int_n_equiv_int_n' (n : nat) :
17 (int_n n.succ) ≃ int_n' n.succ :=
18 begin
19 choose B HB using function.embedding.schroeder_bernstein (F_inj

n) (G_inj n),↪→

20 apply equiv.of_bijective B HB,
21 end

Source Code 3.5: Zn+1 ' Zn+1 − {(0, . . . , 0)}
For any natural number n ≥ 1, we then construct two injective function

fn : Zn+2 → Zn+1 × Z and gn : Zn+1 × Z → Zn+2:

fn((m0, . . . ,mn+1)) = ((m0, . . . ,mn),mn+1)

gn(((m0, . . . ,mn),mn+1)) = (m0, . . . ,mn+1)

Then by Schröder-Bernstein theorem Zn+2 ' Zn+1 × Z for all n ≥ 1.
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1 def fn (n : nat) :
2 (int_n n.succ.succ) -> (int_n n.succ) × ℤ := λ r,
3 ⟨λ m, r (⟨m.1, nat.lt_trans m.2 (nat.lt_succ_self n.succ)⟩),
4 r (⟨n.succ, nat.lt_succ_self n.succ⟩)⟩
5 theorem fn_inj (n : ℕ) : function.injective (fn n) :=
6 begin
7 proof_omitted
8 end
9

10 def gn (n : nat) : (int_n n.succ) × ℤ -> (int_n n.succ.succ) := λ r
m,↪→

11 begin
12 by_cases (m.1 = n.succ),
13 exact r.2,
14 exact r.1 (⟨m.1, lt_of_le_of_ne (fin.le_last m) h⟩),
15 end
16 theorem gn_inj (n : nat) : function.injective (gn n) :=
17 begin
18 proof_omitted
19 end
20

21 theorem aux_int_n (n : nat) :
22 (int_n n.succ.succ) ≃ (int_n n.succ) × ℤ :=
23 begin
24 choose B HB using function.embedding.schroeder_bernstein (fn_inj n)

(gn_inj n),↪→

25 apply equiv.of_bijective B HB,
26 end

Source Code 3.6: Zn+2 ' Zn+1 × Z for all n ≥ 1
Now we are finally in the position of using equation 3.1 to prove the count-

ability of all algebraic numbers. We first define the set of real roots of non-zero
integer polynomials of degree less than n to be:

1 def algebraic_set'_n (n : ℕ) : set ℝ :=
2

∪
p : (poly_n' n.succ), roots_real p.1

Hence by taking union over all natural numbers we can obtain an equivalent
definition of all algebraic number over Z:

1 def algebraic_set' : set real :=
2

∪
n : ℕ, algebraic_set'_n n.succ

3

4 theorem algebraic_set'_eq_algebraic_set :
5 algebraic_set' = algebraic_set :=
6 begin
7 proof_omitted
8 end

We prove by induction that for any n ∈ N, Zn+1 is denumerable (i.e. countably
infinite) where the base case is Z1 ' Z and the inductive step is to prove
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Zn+2 is denumerable using the denumerability of Zn+1. Since non-zero integer
polynomials of degree less than n+ 1 bijectively corresponds to Zn+1, we infer
that non-zero integer polynomials of degree less than n + 1 are denumerable
hence countable. Then the result of taking union over the countable set N⋃

n∈N

⋃
p∈Z[X]
p ̸=0

deg p<n+1

{x ∈ R|ιxp = 0}

is still countable. Then finally the set of all algebraic numbers over Z is conclude
to be countable. Since R is uncountable, transcendental number must exist:

1 theorem int_1_equiv_int : (int_n 1) ≃ ℤ :=
2 begin
3 proof_omitted
4 end
5

6 theorem int_n_denumerable {n : nat} :
7 denumerable (int_n n.succ) :=
8 begin
9 proof_omitted
10 end
11

12 theorem poly_n'_denumerable (n : nat) :
13 denumerable (poly_n' n.succ) :=
14 begin
15 proof_omitted
16 end
17

18 theorem algebraic_set'_n_countable (n : nat) :
19 set.countable (algebraic_set'_n n) :=
20 begin
21 proof_omitted
22 end
23

24 theorem algebraic_set'_countable :
25 set.countable algebraic_set' :=
26 set.countable_Union
27 (λ n, algebraic_set'_n_countable n.succ)
28

29 theorem algebraic_set_countable :
30 set.countable algebraic_set :=
31 begin
32 rw <-algebraic_set'_eq_algebraic_set,
33 exact algebraic_set'_countable
34 end
35

36 theorem transcendental_number_exists :
37 ∃ x : ℝ, transcendental x :=
38 begin
39 proof_omitted
40 end
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Source Code 3.7: algebraic numbers are countable, hence transcendental num-
bers exists.

3.2 Liouville’s theorem and Liouville numbers

General theory about Liouville numbers
A Liouville number is a real number that is “almost rational”, i.e. for any n ∈ N
there is a rational number2

a

b
∈ Q such that b > 1 and 0 < |x− a

b
| < 1

bn
.

1 def liouville_number (x : ℝ) :=
2 ∀ n : ℕ, ∃ a b : ℤ,
3 b > 1 ∧
4 0 < abs(x - a / b) ∧ abs(x - a / b) < 1/b^n

Source Code 3.8: Definition of Liouville number
We first prove a lemma about irrational roots of an integer polynomial:

Lemma 3.2.1. if f is an integer polynomial with degree m > 1 and α is
an irrational root for i(f) where i : Z[X] → R[X] is the trivial embedding,
then there is a positive real number A such that for every rational number

a

b
,∣∣∣α− a

b

∣∣∣ > A

bm
:

1 lemma about_irrational_root (α : ℝ)
2 (hα : irrational α) (f : ℤ[X])
3 (f_deg : f.nat_degree > 1)
4 (α_root : f_eval_on_ℝ f α = 0) :
5 ∃ A : ℝ, A > 0 ∧ ∀ a b : ℤ, b > 0 -> abs(α - a/b) >

(A/b^(f.nat_degree)) :=↪→

Proof. We will abuse the notation to denote f both as the integer polynomial
and the real polynomial via trivial embedding.

6 begin
7 have f_nonzero : f ≠ 0,
8 proof_omitted
9 generalize hfℝ: f.map ℤembℝ = f_ℝ,
10 have hfℝ_nonzero : f_ℝ ≠ 0,
11 proof_omitted
12 generalize hDf: f_ℝ.derivative = Df_ℝ,

2Without losing generality, we are always assuming, for any rational number, the denominator
is a strictly positive natural number.
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Since abs ◦Df : R → R given by x 7→
∣∣∣∣ ddt

∣∣∣∣
t=x

f(t)

∣∣∣∣ is a continuous function
and [α − 1, α + 1] is a non-empty compact subset of R, abs ◦ Df attains a
maximum on [α− 1, α+ 1], denote it by M . Then M > 0 for otherwise M = 0
thenDf(x) = 0 for all x ∈ [α−1, α+1] implying that f is constant contradicting
the degree of f .

13 have H := is_compact.exists_forall_ge
14 a_proof_of_[α− 1, α+ 1]_compact
15 a_proof_of_[α− 1, α+ 1]_not_empty
16 a_proof_of_abs ◦Df_continuous,
17

18 choose x_max hx_max using H,
19 generalize M_def: abs (Df_ℝ.eval x_max) = M,
20 have hM := hx_max.2, rw M_def at hM,
21 have M_non_zero : M ≠ 0,
22 proof_omitted
23 have M_pos : M > 0,
24 proof_omitted

Let us consider the smallest element B of the set
{
1,

1

M

}
∪{|α− x| |f(x) =

0 ∧ x 6= α}, then B > 0.

25 generalize roots_def : f_ℝ.roots = f_roots,
26 generalize roots'_def : f_roots.erase α = f_roots',
27 generalize roots_distance_to_α : f_roots'.image (λ x, abs (α -

x)) = distances,↪→

28 generalize hdistances' : insert (1/M) (insert (1:ℝ) distances) =
distances',↪→

29 have hnon_empty: distances'.nonempty,
30 proof_omitted
31 generalize hB : finset.min' distances' hnon_empty = B,
32 have allpos : ∀ x : ℝ, x ∈ distances' -> x > 0,
33 proof_omitted
34 have B_pos : B > 0,
35 proof_omitted

Let A =
B

2
then A > B > 0. We claim that A satisfies the lemma, i.e.

A > 0 and for every rational number
a

b
, |α− a/b| > A

bm
where m is the degree

of f .

36 generalize hA : B / 2 = A,
37 use A, split,
38 a_proof_of_A > 0

We proceed by assuming that there exists a rational number
a

b
such that∣∣∣α− a

b

∣∣∣ ≤ A

bm
for a contradiction. Since b ≥ 1, we have

∣∣∣α− a

b

∣∣∣ ≤ A < B.

Then
a

b
is not a root of f because otherwise B ≤

∣∣∣α− a

b

∣∣∣.
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39 by_contra absurd,
40 simp only [gt_iff_lt, classical.not_forall, not_lt,

classical.not_imp] at absurd,↪→

41 choose a ha using absurd,
42 choose b hb using ha,
43 have hb2 : b ^ f.nat_degree ≥ 1,
44 proof_omitted
45 have hb21 : abs (α - a / b) ≤ A,
46 proof_omitted
47 have hb22 : abs (α - a/b) < B,
48 proof_omitted
49 have hab0 : (a/b:ℝ) ∈ set.Icc (α-1) (α+1),
50 proof_omitted
51 have hab1 : (a/b:ℝ) ≠ α,
52 proof_omitted
53 have hab2 : (a/b:ℝ) /∈ f_roots,
54 proof_omitted

Since α 6= a

b
, we can assume without losing generality that

a

b
< α. Since

evalf : R → R given by x 7→ f(x) is differentiable, we can use mean value
theorem to find x0 ∈

(a
b
, α
)
such that

Df(x0) =
evalf (α)− evalf (ab )

α− a
b

[Mean value theorem]

= −
evalf (ab )
α− a

b

[α is a root of i(f)]

55 have hab3 := ne_iff_lt_or_gt.1 hab1,
56 cases hab3,
57 have H :=
58 exists_deriv_eq_slope (λ x, f_ℝ.eval x) hab3 _ _,
59 choose x0 hx0 using H,
60 have hx0r := hx0.2,
61 rw [polynomial.deriv, hDf, <-hfℝ] at hx0r,
62 rw [f_eval_on_ℝ] at α_root, rw [α_root, hfℝ] at hx0r, simp only

[zero_sub] at hx0r,↪→

Then |Df(x0)| > 0 hence
∣∣∣α− a

b

∣∣∣ = ∣∣∣∣evalf (ab )Df(x0)

∣∣∣∣ is non-zero. Since M is

the maximum of abs ◦Df on [α − 1, α + 1]. We have |Df(x0)| ≤ M and thus∣∣∣α− a

b

∣∣∣ ≥ |evalf (ab )|
M

. If we write f(X) as
m∑
j=0

λjX
j then

∣∣∣evalf (a
b

)∣∣∣ =
∣∣∣∣∣∣

m∑
j=0

λj
aj

bj

∣∣∣∣∣∣ = 1

bm

∣∣∣∣∣∣
m∑
j=0

λja
jbm−j

∣∣∣∣∣∣ ≥ 1

bm
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Hence we have
∣∣∣α− a

b

∣∣∣ ≥ 1

Mbm
>

A

bm
. But we assumed

∣∣∣α− a

b

∣∣∣ < A

bm
to start

with, this is the desired contradiction.

63 have Df_x0_nonzero : Df_ℝ.eval x0 ≠ 0,
64 proof_omitted
65 have H2 : abs(α - a/b) = abs((f_ℝ.eval (a/b:ℝ)) / (Df_ℝ.eval

x0)),↪→

66 proof_omitted
67

68 have ineq' : polynomial.eval (a/b:ℝ) (polynomial.map ℤembℝ f) ≠
0,↪→

69 proof_omitted
70 have ineq : abs (α - a/b) ≥ 1/(M*b^(f.nat_degree)),
71 proof_omitted
72 have ineq2 : 1/(M*b^(f.nat_degree)) > A / (b^f.nat_degree),
73 proof_omitted
74 have ineq3 : abs (α - a / b) > A / b ^ f.nat_degree,
75 proof_omitted
76 have ineq4 : abs (α - a / b) > abs (α - a / b),
77 proof_omitted
78 linarith,
79

80 We omit the proof of differentiability of evalf , continuity of abs ◦Df and the case when
a

b
> α↪→

81 rest_omitted
82 end

We then prove the irrationality of Liouville numbers.

Lemma 3.2.2. Every Liouville number is irrational

1 lemma liouville_numbers_irrational:
2 ∀ (x : ℝ), (liouville_number x) -> irrational x :=

Proof. Let x be an arbitrary Liouville number and suppose for a contradiction
that x =

a

b
, write n = b+ 1 then 2n−1 > b.

3 begin
4 intros x liouville_x a b hb rid,
5 replace rid : x = ↑a / ↑b, linarith,
6 generalize hn : b.nat_abs + 1 = n,
7 have b_ineq : 2 ^ (n-1) > b,
8 proof_omitted

Since x =
a

b
is a Liouville number we can find a rational number

p

q
such that

q > 1 and 0 <

∣∣∣∣ab − p

q

∣∣∣∣ < 1

qn
or equivalently 0 <

|aq − bp|
bq

<
1

qn
. If aq− bp = 0,

then 0 < 0 is the desired contradiction.
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9 choose p hp using liouville_x n,
10 choose q hq using hp, rw rid at hq,
11 have q_pos : q > 0 := by linarith,
12 rw [div_sub_div at hq, abs_div at hq],
13

14 by_cases (abs (a*q-b*p:ℝ) = 0),
15 intermediate_step_omitted
16 linarith,

If aq − bp 6= 0 then
1

bq
≤ |aq − bp|

bq
. But we also have b < 2n−1 and

2n−1q ≤ qn because q ≥ 2. Hence bq < qn, then
|aq − bp|

bq
>

1

qn
. This is the

desired contradiction.

17 have ineq4 : 1 / (b * q : ℝ) ≤ (abs(a * q - b * p:ℝ)) / (b * q),
18 proof_omitted
19 have b_ineq'' : (b*q:ℝ) < (2:ℝ)^(n-1)*(q:ℝ),
20 proof_omitted
21 have q_ineq3 : 2 ^ (n - 1) * q ≤ q ^ n,
22 proof_omitted
23 have b_ineq2 : b * q < q ^ n, linarith,
24 have rid'' :
25 abs (a*q-b*p:ℝ) / (b*q:ℝ) > 1/q^n,
26 proof_omitted,
27

28 have hq22 := hq2.2,
29 linarith,
30

31 We manipulated inequalities involving division and multiplication hence we need to prove
several things to be positive.↪→

32 proofs_omitted
33 end

With the above lemmas, we are ready to prove the transcendence of Liouville
numbers.

Theorem 3.2.1. Every Liouville number is transcendental.

1 theorem liouville_numbers_transcendental : ∀ x : ℝ,
liouville_number x -> transcendental x :=↪→

Proof. Let x be an arbitrary Liouville number then x is irrational. Assume for
a contradiction that x is algebraic, let f be the non-zero integer polynomial
admitting x as root as a R-polynomial. Then since x is irrational, f has degree
at least 2.
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2 begin
3 intros x liouville_x,
4 have irrational_x : irrational x := liouville_numbers_irrational

x liouville_x,↪→

5 intros rid, rw is_algebraic at rid,
6 choose f hf using rid,
7 have f_deg : f.nat_degree > 1,
8 proof_omitted

By using lemma 3.2.1 we can find a real number A > 0 such that for any

rational number
p

q
,
∣∣∣∣x− p

q

∣∣∣∣ > A

qn
where n is the degree of f .

9 have about_root : f_eval_on_ℝ f x = 0,
10 proof_omitted
11 choose A hA using about_irrational_root x irrational_x f f_deg

about_root,↪→

12 have A_pos := hA.1,

Since R is an Archimedean field, we can find an r ∈ N such that
1

A
≤ 2r.

Then consider m := r + n. Since x is a Liouville number, there is a rational

number
a

b
such that b > 1 and 0 <

∣∣∣x− a

b

∣∣∣ < 1

bm
=

1

brbn
.

13 have exists_r := pow_big_enough A A_pos,
14 choose r hr using exists_r,
15 have hr' : 1/(2^r) ≤ A,
16 proof_omitted
17 generalize hm : r + f.nat_degree = m,
18 replace liouville_x := liouville_x m,
19 choose a ha using liouville_x,
20 choose b hb using ha,
21

22 have ineq : abs (x-a/b:ℝ) < 1/((b:ℝ)^r)*(1/(b:ℝ)^f.nat_degree),
23 proof_omitted

Since b ≥ 2, we have
1

br
≤ 1

2r
≤ A. Thus

∣∣∣x− a

b

∣∣∣ < 1

brbn
≤ A

bn
. This

contradicts lemma 3.2.1 stating that
∣∣∣x− a

b

∣∣∣ > A

qn
.

24 have ineq3 : 1/(b:ℝ)^r ≤ A,
25 proof_omitted,
26 have ineq4 : 1 /(b:ℝ)^r * (1/(b:ℝ)^ f.nat_degree) ≤ (A /

(b:ℝ)^f.nat_degree),↪→

27 proof_omitted
28 have ineq5 : abs (x - a/b:ℝ) < A/(b:ℝ)^f.nat_degree, linarith,
29 have rid := hA.2 a b _, linarith, linarith,
30 end
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Construction of a Liouville number
Knowing that all Liouville numbers are transcendental, we now focus on con-
structing a Liouville number

α =

∞∑
j=0

1

10j!

hence obtain a concrete example of transcendental number α.

Lemma 3.2.3. α converges.

Proof. Since for any n ∈ N we have
1

10n
is non-negative and

1

10n
≤ 1

10n!
, we

can use comparison test against
∞∑
j=0

1

10j
to deduce the convergence of α.

1 def ten_pow_n_fact_inverse (n : ℕ) : ℝ :=
2 (1/10)^n.fact
3 def ten_pow_n_inverse (n : ℕ) : ℝ :=
4 (1/10)^n
5

6 lemma summable_ten_pow_n_fact_inverse : summable
ten_pow_n_fact_inverse :=↪→

7 begin
8 exact @summable_of_nonneg_of_le _
9 ten_pow_n_inverse
10 ten_pow_n_fact_inverse
11 a_proof_of_ 1

10n
≥ 0

12 a_proof_of_ 1

10n
≤

1

10n!

13 a_proof_of_
∞∑
j=0

1

10n
_converges,

14 end
15

16 def α :=
′∑

n, ten_pow_n_fact_inverse n

†: In Lean,
′∑

is to indicate infinite sum while
∑

is for finite sum.

Lemma 3.2.4. For every k ∈ N, there exists some pk ∈ N such that

k∑
j=0

1

jk!
=

pk
10k!

1 notation `α_k` k :=
∑

ii in finset.range(k+1),
ten_pow_n_fact_inverse ii↪→

2

3 notation `α_k_rest` k :=
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4

′∑
ii, ten_pow_n_fact_inverse (ii+(k+1))

5

6 theorem α_k_rat (k:ℕ) :
7 ∃ (p:ℕ), α_k k = (p:ℝ)/((10:ℝ)^k.fact) :=

Proof. We prove by induction on k. For k = 0, the zeroth partial sum is
1

100!
=

1

10
. Thus we can pick p0 = 1.

8 begin
9 induction k with k IH,
10

11 simp only [ten_pow_n_fact_inverse, pow_one, finset.sum_singleton,
finset.range_one, nat.fact_zero],↪→

12 use 1, norm_cast,

Assuming that
k∑

j=0

1

10j!
=

pk
10k!

, letm := 10(k+1)!−k!, then we can set pk+1 :=

pkm+ 1 then

k+1∑
j=0

1

10j!
=

pk
10k!

+
1

10(k+1)!
=

pkm+ 1

10(k+1)!
=

pk+1

10(k+1)!

13 choose pk hk using IH,
14 rw α_k at hk ⊢,
15 generalize hm : 10^((k+1).fact - k.fact) = m,
16 generalize hp : pk * m + 1 = p,
17 use p,
18 proof_omitted
19 end

† : In line 1 and 4 above, we use ii as indexing variable is to avoid clashes.
‡ : finset.range n ranges over {0, . . . , n− 1}.

Theorem 3.2.2. α is a Liouville number

1 theorem liouville_α : liouville_number α :=

Proof. We need to prove that for an arbitrary n ∈ N, there exists a rational

number
p(n)

q(n)
such that p(n) > 1 and 0 <

∣∣∣∣α− p(n)

q(n)

∣∣∣∣ < 1

q(n)n
. By lemma 3.2.4

We know that for some p ∈ N,

α =

n∑
j=0

1

10j!
+

∞∑
j=0

1

10(j+n+1)!
=

p

10n!
+

∞∑
j=0

1

10(j+n+1)!
.
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We take p(n) to be p and q(n) to be 10n!. Then 10n! > 1, thus it suffices to

prove 0 <

∣∣∣∣∣∣
∞∑
j=0

1

10(j+n+1)!

∣∣∣∣∣∣ <
(

1

10n!

)n

2 begin
3 intro n,
4 have lemma1 := α_k_rat n,
5 have lemma2 : (α_k_rest n) = α - α_k n,
6 proof_omitted
7 choose p hp using lemma1,
8 use p, use 10^(n.fact),
9 suffices : 0 < abs (α_k_rest n) ∧
10 abs (α_k_rest n) < 1/(10^n.fact)^n,
11 split,
12 a_proof_of_10n! > 1,
13 tidy,
14 split,

Since each summand is strictly positive,

∣∣∣∣∣∣
∞∑
j=0

1

10(j+n+1)!

∣∣∣∣∣∣ =
∞∑
j=0

1

10(j+n+1)!
>

0. Then we prove

∣∣∣∣∣∣
∞∑
j=0

1

10(j+n+1)!

∣∣∣∣∣∣ <
(

1

10n!

)n

, or equivalently
∞∑
j=0

1

10(j+n+1)!
<(

1

10n!

)n

instead. Because for all j ∈ N, 10j × 10(n+1)! ≤ 10(j+(n+1))!, we have

∞∑
j=0

1

10(j+(n+1))!
≤

∞∑
j=0

(
1

10j
1

10(n+1)!

)
=

1

10(n+1)!

∞∑
j=0

1

10j

=
10

9

1

10(n+1)!
<

2

10(n+1)!
<

(
1

10n!

)n

15 rw [α_k_rest, abs_of_pos (α_k_rest_pos n)],
16

17 have ineq2 :
18 (

′∑
(j:ℕ), ten_pow_n_fact_inverse (j+(n+1))) ≤

19 (
′∑

(i:ℕ), (1/10:ℝ)^i * (1/10:ℝ)^(n+1).fact),
20 proof_omitted
21 have ineq3 :
22 (

′∑
(i:ℕ), (1/10:ℝ)^i * (1/10:ℝ)^(n.fact*n.succ)) ≤
(2/10^n.succ.fact:ℝ),↪→

23 proof_omitted
24 have ineq4 : (2 / 10 ^ (n.fact*n.succ):ℝ) <

(1/((10:ℝ)^n.fact)^n),↪→

25 proof_omitted,
26 have ineq5 :
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27 (
′∑

(j : ℕ), ten_pow_n_fact_inverse (j+(n+1))) <
(1/((10:ℝ)^n.fact)^n),↪→

28 proof_omitted
29 tidy,
30 end

The transcendence of α follows immediately from theorem 3.2.1 and theorem
3.2.2.

Corollary 3.2.1. α is a transcendental number.

1 theorem transcendental_α : transcendental α :=
liouville_numbers_transcendental α liouville_α↪→

3.3 Hermite’s theorem
Throughout this section f will be an integer polynomial with degree d, and t is
a non-negative real number.

Definition 3.3.1. we define

I(f, t) :=

∫ t

0

et−xevalf (x)dx

1 def II (f : ℤ[X]) (t : ℝ) (ht : t ≥ 0) : ℝ :=
2

∫
x in set.Icc 0 t, real.exp(t-x)*(f_eval_on_ℝ f x)

If f(X) =

d∑
j=0

λjX
j , we define f̄(X) :=

d∑
j=0

|λj |Xj

1 def f_bar (f : ℤ[X]) : ℤ[X] :=
2 { support := f.support,
3 to_fun := λ n, abs (f.coeff n),
4 mem_support_to_fun := proof_omitted }

†: In Lean, an integer polynomial is a function N → Z with finite support such
that for any n ∈ N the value of the said function at n is not zero if and only if
n is in the support of the said function. Thus to define f̄ , not only need we to
specify the support and the function, a proof of n-th coefficient being non-zero
if and only if n being in the support is needed as well.

Let us estimate an upper bound for |I(f, t)| using f̄ .
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Lemma 3.3.1. If x ∈ [0, t], then |evalf (x)| ≤ evalf̄ (t)

1 lemma f_bar_ineq (f : ℤ[X]) (t : ℝ) (ht : t ≥ 0) :
2 ∀ x ∈ set.Icc 0 t, abs (f_eval_on_ℝ f x) ≤ f_eval_on_ℝ (f_bar f)

t :=↪→

Proof. If we write f(X) =

d∑
j=0

λjX
j , then for any x ∈ [0, t], we have |evalf (x)| =∣∣∣∣∣∣

d∑
j=0

λjx
j

∣∣∣∣∣∣ ≤
d∑

j=0

∣∣λjx
j
∣∣.

3 intros x hx,
4 have lhs : f_eval_on_ℝ f x =

∑
i in f.support, (f.coeff i : ℝ) *

x ^ i,↪→

5 proof_omitted
6 rw lhs,
7

8 have ineq1 : abs (
∑

(i : ℕ) in f.support, (f.coeff i:ℝ) * x ^ i)
≤

∑
i in f.support, (abs (f.coeff i:ℝ) * (x ^ i)),↪→

9 proof_omitted

On the right hand side, evalf̄ (t) =
d∑

j=0

|λj | tj . We conclude by noting that

for any n ∈ N, xn ≤ tn.

10 have rhs : f_eval_on_ℝ (f_bar f) t =
∑

i in (f_bar f).support,
abs (f.coeff i:ℝ) * t ^ i,↪→

11 proof_omitted
12 rw rhs,
13

14 have ineq2 :
∑

(i : ℕ) in f.support, abs (f.coeff i:ℝ) * x ^ i ≤∑
i in (f_bar f).support, abs (f.coeff i:ℝ) * t ^ i,↪→

15 {
16 suffices : x ^ n ≤ t ^ n,
17 proof_omitted
18 },
19 exact le_trans ineq1 ineq2,

Theorem 3.3.1.
|I(f, t)| ≤ tetevalf̄ (t)

1 theorem abs_II_le2 (f : ℤ[X]) (t : ℝ) (ht : t ≥ 0) :
2 abs (II f t ht) ≤ t*t.exp*(f_eval_on_ℝ (f_bar f) t) :=

33



Proof.

|I(f, t)| =
∣∣∣∣∫ t

0

et−xevalf (x)dx
∣∣∣∣

≤
∫ t

0

∣∣et−xevalf (x)
∣∣ dx

≤ tetevalf̄ (t)

where the last inequality is due to et−x ≤ et for all x ∈ [0, t] and lemma 3.3.1.

3 begin
4 have ineq1 :
5 abs (II f t ht) ≤

∫
(x : ℝ) in set.Icc 0 t, abs ((t-x).exp *

f_eval_on_ℝ f x),↪→

6 proof_omitted
7 have ineq2 :
8 (

∫
(x : ℝ) in set.Icc 0 t,

9 abs ((t-x).exp * f_eval_on_ℝ f x)) ≤
10 t * t.exp * f_eval_on_ℝ (f_bar f) t,
11 proof_omitted
12 exact le_trans ineq1 ineq2,
13 end

Lemma 3.3.2.

I(f, t) :=

∫ t

0

et−xevalf (x)dx = etevalf (0)− evalf (t) + I(f ′, t)

1 lemma II_integrate_by_part
2 (f : ℤ[X]) (t : ℝ) (ht : t ≥ 0) :
3 (II f t ht) = (real.exp t) * (f_eval_on_ℝ f 0) - (f_eval_on_ℝ f

t) + (II f.derivative t ht) :=↪→

Proof. Since et−x =
d
dx
(
−et−x

)
, we can use integration by part.

4 rw II,
5 have eq :
6 (

∫
x in set.Icc 0 t,

7 (t-x).exp * f_eval_on_ℝ f x) =
8 (

∫
x in set.Icc 0 t,

9 f_eval_on_ℝ f x * (deriv (λ x, -(real.exp (t-x))) x)),
10 proof_omitted
11 rw eq,
12 replace eq := integrate_by_part (f_eval_on_ℝ f) (λ (x : ℝ), -(t -

x).exp) 0 t ht,↪→

13 intermediate_steps_omitted
14 rw eq, ring,
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Lemma 3.3.3. For any m ∈ N,

I(f, t) :=

∫ t

0

et−xevalf (x)dx = et
m∑
j=0

evalf(j)(0)−
m∑
j=0

evalf(j)(t) + I(f (m+1), t)

1 lemma II_integrate_by_part_m (f : ℤ[X]) (t : ℝ)
2 (ht : t ≥ 0) (m : ℕ) :
3 II f t ht = t.exp * (

∑
i in finset.range (m+1), (f_eval_on_ℝ

(deriv_n f i) 0)) - (
∑

i in finset.range (m+1), f_eval_on_ℝ
(deriv_n f i) t) + (II (deriv_n f (m+1)) t ht) :=

↪→

↪→

Proof. We prove by induction on m. The base case is lemma 3.3.2

4 begin
5 induction m with m ih,
6 rw [deriv_n, II_integrate_by_part],
7 simplification_steps_omitted

The inductive steps is to apply lemma 3.3.2 to f (m+1) and regroup.

8 rw [ih, II_integrate_by_part],
9 simplification_steps_omitted
10 end

By the previous lemma, we obtain an alternative formulation of I(f, t)

Theorem 3.3.2.

I(f, t) = et

 d∑
j=0

evalf(j)(0)

−
d∑

j=0

evalf(j)(t)

1 def I (f : ℤ[X]) (t : ℝ) (ht : t ≥ 0) : ℝ :=
2 t.exp * (

∑
i in finset.range f.nat_degree.succ, (f_eval_on_ℝ

(deriv_n f i) 0)) - (
∑

i in finset.range f.nat_degree.succ,
(f_eval_on_ℝ (deriv_n f i) t))

↪→

↪→

3

4 theorem II_eq_I (f : ℤ[X]) (t : ℝ) (ht : t ≥ 0) :
5 II f t ht = I f t ht

Proof. We use lemma 3.3.3 with m := d, the degree of f . Then we get

I(f, t) :=

∫ t

0

et−xevalf (x)dx = et
d∑

j=0

evalf(j)(0)−
d∑

j=0

evalf(j)(t) + I(f (d+1), t)

together with f (d+1) is the zero polynomial so that I(f (d+1), t) = 0.
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6 begin
7 have II_integrate_by_part_m :=
8 II_integrate_by_part_m f t ht f.nat_degree,
9 have triv : deriv_n f (f.nat_degree + 1) = 0,
10 proof_omitted
11 rw I, rw [triv, II_0, add_zero] at II_integrate_by_part_m,
12 assumption,
13 end

Transcendence of e
To prove the transcendence of e, we will assume the algebraicity for the hope of
a contradiction.

Definition 3.3.2. For any prime number p and natural number n, we define

an integer polynomial fp,n(X) := Xp−1
n∏

i=1

(X− i)p. For any integer polynomial

g with degree n whose i-th coefficient is denoted by gi, we define Jp(g) =
n∑

j=0

gjI(fp,n, j)

1 def f_p (p : ℕ) (hp : nat.prime p) (n : ℕ): ℤ[X] :=
2 polynomial.X ^ (p - 1) *
3 (

∏
i in finset.range n,

4 (polynomial.X - (polynomial.C (i+1:ℤ)))^p)
5

6 def J (g : ℤ[X]) (p : ℕ) (hp : nat.prime p) : ℝ :=
7

∑
i in finset.range g.nat_degree.succ,

8 (g.coeff i : ℝ) * (II (f_p p hp g.nat_degree) i (nonneg_nat i))

Let us evaluate an upper bound for Jp(g)

Theorem 3.3.3. Let g and fp,n be as above. Define

M := (d+ 1)
(
max{1, |g0|, . . . , |gm|}(n+ 1)en+1 (2(n+ 1))

1+n
)
.

Then
|Jp(g)| ≤ Mp

1 def M (g : ℤ[X]) : ℝ :=
2 g.nat_degree.succ * ((max_abs_coeff_1 g) * (g.nat_degree+1) *

((g.nat_degree:ℝ)+1).exp *
(2*(g.nat_degree+1))^(1+g.nat_degree))

↪→

↪→

3
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4

5 theorem abs_J_upper_bound
6 (g : ℤ[X]) (p : ℕ) (hp : nat.prime p) :
7 abs (J g p hp) ≤ (M g)^p :=

Proof.

|Jp(g)| =

∣∣∣∣∣∣
n∑

j=0

gjI(fp,n, j)

∣∣∣∣∣∣ [by definition]

≤
n∑

j=0

|gjI(fp,n, j)|

ineq1 ≤
n∑

j=0

|gj | jejevalf̄p,d(j) [by theorem 3.3.1]

≤
n∑

j=0

max{1, |g0|, . . . , |gm|} · (d+ 1)ed+1

(
jp−1

n∏
i=1

(j − i)p

)

≤
n∑

j=0

max{1, |g0|, . . . , |gm|} · (d+ 1)ed+1

(
(2d+ 1)p

n∏
i=1

(2d+ 1)p

)
ineq2 = (n+ 1)

(
max{1, |g0|, . . . , |gm|} · (n+ 1)en+1 (2n+ 1)

p(1+n)
)

ineq3 ≤ (n+ 1)p
(
max{1, |g0|, . . . , |gm|}p · (n+ 1)pep(n+1) (2n+ 1)

p(1+n)
)

= Mp

1 theorem abs_J_upper_bound (g : ℤ[X]) (p : ℕ) (hp : nat.prime p) :
abs (J g p hp) ≤ (M g)^p :=↪→

2 begin
3 have ineq1 := abs_J_ineq1'' g p hp,
4 have ineq2 := sum_ineq_1 g p hp,
5 have ineq3 := sum_ineq_2 g p hp,
6 have ineq4 := le_trans (le_trans ineq1 ineq2) ineq3,
7 rw [M, mul_pow, mul_pow, mul_pow, mul_pow, <-pow_mul, add_mul,

one_mul],↪→

8 have eq1 : g.nat_degree * p = p * g.nat_degree, rw mul_comm, rw
eq1, exact ineq4,↪→

9 end

†: Later we will see that as long as there exists for some c > 0, |Jp(g)| < cp,
we can prove the transcendence of e. Thus here M is chosen to be quite rough
on purpose to trivialise the small inequalities needing to be proved such as
jp−1 < (2(n+ 1))p for any j = 0, . . . , d.

For lower bound of Jp(g) where evalg(e) = 0, we need to work with more
precision.
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Lemma 3.3.4. For any prime number p and natural number n, fp,n(X) has
degree (n+ 1)p− 1.

1 lemma deg_f_p (p : ℕ) (hp : nat.prime p) (n : ℕ) : (f_p p hp
n).nat_degree = (n+1)*p - 1 :=↪→

2 begin
3 proof_omitted
4 end

Theorem 3.3.4. Let g ∈ Z[X] with degree n whose i-th coefficient is denoted
by gi such that evalg(e) = 0 . Let m = (n+ 1)p− 1. Then

Jp(g) = −
m∑
j=0

n∑
k=0

gkevalf(j)
p,n

(k) (3.2)

1 theorem J_eq' (g : ℤ[X])
2 (e_root_g : (polynomial.aeval ℤ ℝ e) g = 0) (p : ℕ) (hp :

nat.prime p) :↪→

3 (J g p hp) =
4 -

∑
j in finset.range (f_p p hp g.nat_degree).nat_degree.succ,

5 (
∑

k in finset.range g.nat_degree.succ,
6 (g.coeff k : ℝ) * (f_eval_on_ℝ (deriv_n (f_p p hp

g.nat_degree) j) (k:ℝ))) :=↪→

Proof. We consider the following equalities

Jp(g) =

n∑
k=0

gkI(fp,n, k) [definition]

J_eq1 =

n∑
k=0

gk

ek
 m∑

j=0

eval
f
(j)
p,n

(0)

−
m∑
j=0

eval
f
(j)
p,n

(k)

 [by lemma 3.3.2]

J_eq2 =

n∑
k=0

gke
k

 m∑
j=0

eval
f
(j)
p,n

(0)

−
n∑

k=0

gk

m∑
j=0

eval
f
(j)
p,n

(k)

=

 m∑
j=0

eval
f
(j)
p,n

(0)

 n∑
k=0

gke
k −

n∑
k=0

gk

m∑
j=0

eval
f
(j)
p,n

(k)

J_eq3 = −
n∑

k=0

gk

m∑
j=0

eval
f
(j)
p,n

(k) [evalg(e) = 0]

= −
m∑
j=0

n∑
k=0

gkevalf(j)
p,n

(k)

7 begin
8 rw [J_eq1, J_eq2, J_eq3, finset.sum_comm],
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9 simp only [zero_sub, neg_inj],
10 apply congr_arg, ext, rw finset.mul_sum,
11 assumption,
12 end

†: Types too long to be displayed with clarity, thus the information about J_eqi
was moved to the start of the proof.

The summation in 3.2 actually starts at j = p − 1 because of the following
lemmas.

Lemma 3.3.5. Let g, p, n, fp,n be like above. If j < p−1, then eval
f
(j)
p,n

(0) = 0.

1 lemma deriv_f_p_k_eq_zero_k_eq_0_when_j_lt_p_sub_one
2 (p : ℕ) (hp : nat.prime p) (n j : ℕ) (hj : j < p-1):
3 polynomial.eval 0 (deriv_n (f_p p hp n) j) = 0 :=

Proof. Let us agree to write fp,n(X) = Xp−1Πp,n as a short hand. Then

f (j)
p,n(X) =

j∑
i=0

(
j

i

)
(Xp−1)(j−i)Π(i)

p,n

eval
f
(j)
p,n

(0) =

j∑
i=0

(
j

i

)
eval(Xp−1)(j−i)(0)eval

Π
(i)
p,n

(0)

(3.3)

We prove that for all i = 0, . . . , j, since j − i < p− 1,

(Xp−1)(j−i) =

(
j−i−1∏
k=0

(p− 1)− k

)
Xp−1−(j−i). (3.4)

Thus by substituting 0, we get eval
f
(j)
p,n

(0) =

j∑
i=0

(
j

i

)
0 = 0

4 begin
5 corresponding to equation (3.3)
6 rw [deriv_n_poly_prod, eval_sum',polynomial.eval_mul],
7 intermediate_steps_omitted
8

9 corresponding to equation (3.4)
10 rw deriv_X_pow',
11 rest_omitted
12 end

Similarly, we have the following lemma:
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Lemma 3.3.6. Let g, p, n, fp,n be like above. If j < p, then eval
f
(j)
p,n

(x) = 0 for
all 1 ≤ x ≤ n.

1 lemma deriv_f_p_when_j_lt_p (p : ℕ) (hp : nat.prime p) (n : ℕ) :
2 ∀ x : ℕ, ∀ j : ℕ, j < p -> x > 0 -> x < n.succ ->
3 polynomial.eval (x:ℤ) (deriv_n (f_p p hp n) j) = 0 :=

Proof. We prove this by induction on n. For n = 0, there is no 1 ≤ x ≤ 0, there
is nothing to prove.

4 begin
5 induction n with n hn,
6 intros x j hj hx1 hx2,
7 linarith,

For the inductive step, assume eval
f
(j)
p,n

(k) = 0 for all 1 ≤ k ≤ n. Then for any
1 ≤ x ≤ n+ 1

fp,n+1 = fp,n(X − (n+ 1))p

f
(j)
p,n+1 =

j∑
i=0

(
j

i

)
f (j−i)
p,n ((X − (n+ 1))p)

(i)

eval
f
(j)
p,n+1

(x) =

j∑
i=0

(
j

i

)
eval

f
(j−i)
p,n

(x)eval((X−(n+1))p)(i)(x).

We will prove that for any 0 ≤ y ≤ j,

eval
f
(j−y)
p,n

(x)eval((X−(n+1))p)(y)(x) = 0

8 intros x j hj hx1 hx2,
9 rw [f_p_n_succ, deriv_n_poly_prod, eval_sum'],
10 apply finset.sum_eq_zero, intros y hy,

Here we have that either x ≤ n or x = n+1. For x ≤ n, by inductive hypothe-
sis we have eval

f
(j−y)
p,n

(x) = 0 then of course eval
f
(j−y)
p,n

(x)eval((X−(n+1))p)(y)(x) =

0

11 cases hx2,
12 simp only [int.cast_coe_nat, int.cast_add,

ring_hom.eq_int_cast, gt_iff_lt, int.coe_nat_eq_zero,
int.cast_one, mul_eq_zero] at *,

↪→

↪→

13 rw IH x (j-y) (gt_of_gt_of_ge hj (nat.sub_le j y)) hx1 hx2,
14 tauto,

For x = n+ 1, we show eval((X−(n+1))p)(y)(x) = 0. This is true because

((X − (n+ 1))p)
(y)

=

(
y∏

i=0

(p− i)

)
(X − (n+ 1))p−y
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and p− y > 0 hence 0p−y = 0.

15 intermediate_steps_omitted
16 rw [hx2, deriv_X_sub_pow, polynomial.eval_mul,

polynomial.eval_pow],↪→

17 simp only [polynomial.eval_X, polynomial.eval_C,
int.coe_nat_succ, polynomial.eval_sub, sub_self,
mul_eq_zero],

↪→

↪→

18 right, apply zero_pow (nat.sub_pos_of_lt (gt_of_ge_of_gt hj hy))
19 exact le_of_lt (gt_of_ge_of_gt hj hy),

Combining the previous lemmas 3.3.5 and 3.3.6, we have the following corol-
lary.

Corollary 3.3.1. Let g, p, n, fp,n be like above. If j < p−1, then eval
f
(j)
p,n

(k) = 0

for all 0 ≤ k ≤ n.
Thus

p−2∑
j=0

n∑
k=0

gkevalf(j)
p,n

(k) = 0

1 theorem deriv_f_p_k_eq_zero_when_j_lt_p_sub_one
2 (p : ℕ) (hp : nat.prime p) (n j : ℕ)
3 (hj : j < p - 1) (k : ℕ)
4 (hk : k ∈ finset.range n.succ):
5 polynomial.eval (k:ℤ) (deriv_n (f_p p hp n) j) = 0 :=
6 begin
7 cases k,
8 exact deriv_f_p_k_eq_zero_k_eq_0_when_j_lt_p_sub_one p hp n j hj,
9 apply deriv_f_p_when_j_lt_p p hp n k.succ j (nat.lt_of_lt_pred

hj) (nat.succ_pos k) (finset.mem_range.mp hk),↪→

10 end
11

12 theorem J_partial_sum_from_one_to_p_sub_one
13 (g : ℤ[X]) (p : ℕ) (hp : nat.prime p) :
14

∑
(j : ℕ) in finset.range (p - 1),

15
∑

(k : ℕ) in finset.range g.nat_degree.succ,
16 g.coeff k * polynomial.eval ↑k (deriv_n (f_p p hp g.nat_degree)

j) = 0 :=↪→

17 begin
18 rw finset.sum_eq_zero, intros, rw finset.sum_eq_zero, intros,
19 rw mul_eq_zero, right,
20 rw deriv_f_p_k_eq_zero_when_j_lt_p_sub_one, simp only

[finset.mem_range] at H, exact H, exact H_1,↪→

21 end

When j = p− 1, we can express eval
f
(p−1)
p,n

(0) in a closed form.

Theorem 3.3.5. Let g, p, n, fp,n be like above. Then

eval
f
(p−1)
p,n

(0) = (p− 1)!(−1)np(n!)p
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1 theorem deriv_f_p_zero_when_j_eq_p_sub_one
2 (p : ℕ) (hp : nat.prime p) (n : ℕ) :
3 polynomial.eval 0 (deriv_n (f_p p hp n) (p-1)) =
4 (p-1).fact * (-1)^(n*p)*(n.fact)^p :=

Proof. We have the following equalities:

f (p−1)
p,n (X) =

p−1∑
i=0

(
p− 1

i

)
(Xp−1)(p−1−i)Π(i)

p,n

eval
f
(p−1)
p,n

(0) =

p−1∑
i=0

(
p− 1

i

)
eval(Xp−1)(p−1−i)(0)eval

Π
(i)
p,n

(0)

=

(
p− 1

0

)
eval(Xp−1)(p−1)(0)evalΠp,n

(0)

where the last equality is due to eval(Xp−1)(p−1−i)(0) = 0 for i 6= 0 (lemma 3.3.6).

5 begin
6 rw [f_p, deriv_n_poly_prod, eval_sum'],
7 rw finset.sum_eq_single 0,
8

9 a_proof_of_
(p− 1

0

)
eval(Xp−1)(p−1) (0)evalΠp,n (0) = (p− 1)!(−1)np(n!)p

10

11 a_proof_of_eval(Xp−1)(p−1−i) (0) = 0_for_all_i ̸= 0

12 end

Combine theorem 3.3.5 with lemma 3.3.6, we get the following corollary:

Corollary 3.3.2. Let g, p, n, fp,n be like above. Then

n∑
k=0

gkevalf(p−1)
p,n

(k) = g0(p− 1)!(−1)np(n!)p

1 theorem J_partial_sum_from_p_sub_one_to_p
2 (g : ℤ[X]) (e_root_g : (polynomial.aeval ℤ ℝ e) g = 0)
3 (p : ℕ) (hp : nat.prime p) :
4

∑
(k : ℕ) in finset.range g.nat_degree.succ, g.coeff k *
polynomial.eval ↑k (deriv_n (f_p p hp g.nat_degree) (p - 1))
=

↪→

↪→

5 g.coeff 0 * (↑((p - 1).fact) * (-1) ^ (g.nat_degree * p) *
↑(g.nat_degree.fact) ^ p) :=↪→

6 begin
7 rw finset.sum_eq_single 0,
8

9 simp only [int.coe_nat_zero],
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10 rw deriv_f_p_zero_when_j_eq_p_sub_one p hp g.nat_degree,
11

12 intros i hi1 hi2, rw mul_eq_zero, right,
13 apply deriv_f_p_when_j_lt_p p hp g.nat_degree,
14 rest_omitted
15 end

The final piece of the puzzle is to evaluate f j
p,n when j ≥ p. We first consider

when k = 0:

Lemma 3.3.7. Let g, p, n, fp,n be like above. Then if j ≥ p then p! | eval
f
(j)
p,n

(0).

1 lemma k_eq_0_case_when_j_ge_p (p : ℕ) (hp : nat.prime p) (n:ℕ) :
2 ∀ j : ℕ, j ≥ p -> (p.fact:ℤ) | polynomial.eval 0 (deriv_n (f_p p

hp n) j) :=↪→

Proof. Using equation 3.3, we need to prove that for all 0 ≤ x ≤ j,

p! |
(
j

x

)
eval(Xp−1)(j−x)(0)eval

Π
(x)
p,n

(0)

3 begin
4 rw f_p, intros j j_ge_p, rw [deriv_n_poly_prod, eval_sum'],
5 apply finset.dvd_sum, intros x hx,
6 simp only [polynomial.eval_C, polynomial.C_add, polynomial.C_1,

polynomial.eval_mul, nat.fact],↪→

If j−x = p−1, then eval(Xp−1)(j−x)(0) = (p−1)!, so it suffices to prove that
p | eval

Π
(x)
p,n

(0). In this case, x 6= 0, otherwise j = p− 1 > p. For x ≥ 1,

Π(x)
p,n =

((
n∏

i=1

(X − i)

)p)(x)

= p

( n∏
i=1

(X − i)

)p−1( n∏
i=1

(X − i)

)′
(x−1)

(3.5)

7 by_cases j - x = p - 1,
8 rw [h, deriv_X_pow'], simp only [mul_one, polynomial.eval_C,

nat.sub_self, pow_zero],↪→

9 rw <-fact_eq_prod',
10 suffices :
11 (p:ℤ) | polynomial.eval 0 (deriv_n (

∏
(x : ℕ) in finset.range

n, (polynomial.X - (polynomial.C ↑x + 1)) ^ p) x),↪→

12 proof_omitted
13 cases x,
14 simplification_omitted, linarith,
15 rw finset.prod_pow,
16 apply dvd_poly_pow_deriv, corresponding to equation 3.5
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If j − x 6= p− 1, either j − x < p− 1 or j − x > p− 1. If j − x < p− 1 then
eval(Xp−1)j−x(0) = 0; if j − x > p− 1, (Xp−1)j−x is the zero polynomial.

17 replace h : j - x < p - 1 ∨ j - x > p - 1, exact lt_or_gt_of_ne
h,↪→

18 cases h,
19 rw [(deriv_X_pow' (p-1) (j-x) (le_of_lt h)),

polynomial.eval_mul],↪→

20 simp only [polynomial.eval_X, polynomial.eval_C,
polynomial.eval_pow],↪→

21 rw (rw (zero_pow (nat.sub_pos_of_lt h))),
22 simp only [zero_mul, mul_zero, dvd_zero],
23

24 rw deriv_X_pow_too_much,
25 simp only [zero_mul, mul_zero, polynomial.eval_zero, dvd_zero],
26 assumption,

Lemma 3.3.8. Let g, p, n, fp,n be like above. Then for all natural number j,
p! | eval

Π
(j)
p,n

(k) for any 0 < k ≤ n and any p > 0, prime or composite.

1 lemma p_fact_dvd_prod_part (n : ℕ) :
2 ∀ j : ℕ, ∀ k : ℕ, ∀ p : ℕ, p > 0 -> k > 0 -> k < n.succ ->
3 (p.fact:ℤ) | polynomial.eval (k:ℤ) (deriv_n (

∏
i in finset.range

n, (polynomial.X - polynomial.C (↑i + 1))^p) j) :=↪→

Proof. We proceed by using strong induction on j. For j = 0 we need to prove
p! | eval

Π
(0)
p,np,n

(k) = evalΠp,n
(k) for any 0 < k ≤ n. This is true because

evalΠp,n
(k) = 0

4 intros j,
5 apply nat.case_strong_induction_on j,
6 intros k p hp hk1 hk2,
7 rw zeroth_deriv, simp only [int.cast_coe_nat, int.cast_add,

ring_hom.eq_int_cast, int.cast_one, nat.fact],↪→

8 suffices : polynomial.eval (k:ℤ) (
∏

(i : ℕ) in finset.range n,
(polynomial.X - (↑i + 1)) ^ p) = 0,↪→

9 rw this, exact dvd_zero ↑(nat.fact p),
10 a_proof_of_evalΠp,n (k) = 0

For the inductive case, we assume p! | eval
Π

(m)
p,n

(k) for all m ≤ j, p > 0 and
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0 < k ≤ n. This is certainly true for p = 1, for p! = 1. For p > 1,

Π(j+1)
p,n =

(( n∏
i=0

(X − (i+ 1))

)p)′(j)

= p

( n∏
i=0

(X − (i+ 1))

)p−1( n∏
i=0

(X − (i+ 1))

)′
(j)

= p

j∑
i=0

(
j

i

)
Π

(j−i)
p−1,n

(
Π′

1,n

)(i)
By inductive hypothesis (p− 1)! | Πj−i

p−1,n for any i = 0, . . . , j. Thus p! | Π(j+1)
p,n

11 intros j IH k p hp hk1 hk2,
12 rw [deriv_n, function.iterate_succ_apply, <-deriv_n,

finset.prod_pow, poly_pow_deriv, deriv_n_poly_prod,
eval_sum'],

↪→

↪→

13 apply finset.dvd_sum,
14 intros x hx,
15 by_cases (p=1), rw h, norm_num,
16

17 replace IH := IH (j-x) _ k (p-1) _ hk1 hk2,
18 intermediate_steps_omitted,
19 exact IH,

Immediately by lemmas 3.3.7, 3.3.8 and equation 3.3, we have:

Corollary 3.3.3. Let g, p, n, fp,n be like above. If j ≥ p then for all 0 ≤ k ≤ n
we have p! | eval

f
(j)
p,n

(k). Then

p! |
m∑
j=p

n∑
k=0

gkevalf(j)
p,n

(k)

1 lemma k_ge_1_case_when_j_ge_p (p : ℕ) (hp : nat.prime p) (n:ℕ) :
2 ∀ j : ℕ, j ≥ p -> ∀ k : ℕ, k < n.succ -> k > 0 -> (p.fact:ℤ) |

polynomial.eval (k:ℤ) (deriv_n (f_p p hp n) j) :=↪→

3 begin
4 intros j hj k hk1 hk2,
5 rw [f_p, deriv_n_poly_prod, eval_sum'], apply finset.dvd_sum,
6 intros x hx,
7 rw polynomial.eval_mul, rw polynomial.eval_mul,
8 apply dvd_mul_of_dvd_right,
9 apply p_fact_dvd_prod_part n _ _ _ (nat.prime.pos hp) hk2 hk1,
10 end
11

12 theorem when_j_ge_p_k (p : ℕ) (hp : nat.prime p) (n:ℕ) :
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13 ∀ j : ℕ, j ≥ p -> ∀ k : ℕ, k ∈ finset.range n.succ -> (p.fact:ℤ)
| polynomial.eval (k:ℤ) (deriv_n (f_p p hp n) j) :=↪→

14 begin
15 intros j j_ge_p k hk,
16 simp only [finset.mem_range] at hk,
17 cases k,
18 exact k_eq_0_case_when_j_ge_p p hp n j j_ge_p,
19 exact k_ge_1_case_when_j_ge_p p hp n j j_ge_p k.succ hk

(nat.succ_pos k),↪→

20 end
21

22 theorem J_partial_sum_rest (g : ℤ[X]) (e_root_g : (polynomial.aeval
ℤ ℝ e) g = 0) (p : ℕ) (hp : nat.prime p) :↪→

23 (p.fact:ℤ) |
24

∑
(j : ℕ) in finset.Ico p (f_p p hp
g.nat_degree).nat_degree.succ,↪→

25
∑

(k : ℕ) in finset.range g.nat_degree.succ, g.coeff k *
polynomial.eval (k:ℤ) (deriv_n (f_p p hp g.nat_degree) j)
:=

↪→

↪→

26 begin
27 apply finset.dvd_sum, intros x hx,
28 apply finset.dvd_sum, intros y hy,
29 apply dvd_mul_of_dvd_right,
30 apply when_j_ge_p_k, simp only [finset.Ico.mem] at hx,
31 exact hx.1, exact hy,
32 end

We finally have everything we need to evaluate equation 3.2: by previous
corollaries 3.3.1 3.3.2 we have:

Corollary 3.3.4. Let g, p, n, fp,n be like above, there is some c ∈ Z,

Jp(g) = −g0(p− 1)!(−1)np(n!)p + p! · c

1 theorem J_eq_final
2 (g : ℤ[X]) (e_root_g : (polynomial.aeval ℤ ℝ e) g = 0)
3 (p : ℕ) (hp : nat.prime p) :
4 ∃ c : ℤ, (J g p hp) = ℤembℝ ((-(g.coeff 0 * (↑((p - 1).fact) *

(-1) ^ (g.nat_degree * p) * ↑(g.nat_degree.fact) ^ p))) +
(p.fact:ℤ) * c) :=

↪→

↪→

5 begin
6 have J_eq := J_eq'' g e_root_g p hp, rw J_eq, rw

<-ring_hom.map_neg,↪→

7 have seteq : finset.range (f_p p hp g.nat_degree).nat_degree.succ
= finset.range (p-1) ∪ {p-1} ∪ finset.Ico p (f_p p hp
g.nat_degree).nat_degree.succ,

↪→

↪→

8 proof_omitted
9 rw seteq, rw finset.sum_union, rw finset.sum_union,
10 rw J_partial_sum_from_one_to_p_sub_one g, rw zero_add, rw

finset.sum_singleton,↪→

11 rw J_partial_sum_from_p_sub_one_to_p g e_root_g,
12

13 have H3 := J_partial_sum_rest g e_root_g p hp,
14 rw dvd_iff_mul at H3,
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15 choose c eq3 using H3,
16 rw eq3, rw neg_add, use -c, rw neg_mul_eq_mul_neg ↑(p.fact),
17

18 rest_omitted
19 end

We are now ready to prove a lower bound for |Jp(g)|.

Theorem 3.3.6. Let g, p, n, fp,n be like above, if we further assume g0 6= 0,
p > n and p > |g0|. Then (p− 1)! ≤ |Jp(g)|

1 theorem abs_J_lower_bound
2 (g : ℤ[X]) (e_root_g : (polynomial.aeval ℤ ℝ e) g = 0)
3 (coeff_nonzero : (g.coeff 0) ≠ 0)
4 (p : ℕ) (hp : nat.prime p)
5 (hp2 : p > g.nat_degree ∧ p > (g.coeff 0).nat_abs) :
6 ((p-1).fact:ℝ) ≤ (abs (J g p hp)) :=

Proof. By the previous theorem, for some c ∈ Z

|Jp(g)| = (p− 1)! |(−g0(−1)np(n!)p) + pc| .

Thus to prove |Jp(g)| > (p − 1)!, we prove |(−g0(−1)np(n!)p) + pc| ≥ 1, equiv-
alently, (−g0(−1)np(n!)p) + pc 6= 0. Let us assume otherwise, i.e. assume
(−g0(−1)np(n!)p) + pc = 0

7 simplification_steps_omitted
8 intro rid,

Then since p | 0, we have p | (−g0(−1)np(n!)p)+pc then p | (−g0(−1)np(n!)p).

9 have rid2 : (p:ℤ) | g.coeff 0 * ((-1) ^ (g.nat_degree * p) *
-↑(g.nat_degree.fact ^ p)) + ↑p * c,↪→

10 rw rid, exact dvd_zero ↑p,
11

12 replace rid2 : (p:ℤ) | g.coeff 0 * ((-1) ^ (g.nat_degree * p) *
-↑(g.nat_degree.fact ^ p)),↪→

13 refine (dvd_add_iff_left _).2 rid2, exact dvd.intro c rfl,

Assume (−1)np = 1, then we have p | g0(n!)p, then either p | |g0| or p | (n!)p.
If p | |g0| then p ≤ |g0|.

14 have triv : (-1:ℤ) ^ (g.nat_degree * p) = 1 ∨ (-1:ℤ) ^
(g.nat_degree * p) = -1 := neg_one_pow_eq_or _,↪→

15 cases triv,
16 simplification_steps_omitted
17 rw nat.prime.dvd_mul at rid2,
18 cases rid2,
19 simplification_steps_omitted
20 have hm : p*m = (g.coeff 0).nat_abs, proof_omitted,
21 replace hm : p ≤ (g.coeff 0).nat_abs, proof_omitted,
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If p | (n!)p, since p is a prime number, p | n! implies p ≤ n.

22 intermediate_steps_omitted
23 have H : p | ↑(g.nat_degree.fact).nat_abs,
24 rw nat.prime.dvd_fact at H,

For (−1)np = −1, the same proof works mutatis mutandis.

25 rest_omitted
26 end

To fulfil the requirement of g having a non-zero coefficient, we divide g by a
suitable power of X as following:

1 def min_degree_term (f : ℤ[X]) (hf : f ≠ 0) : ℕ :=
2 finset.min' (f.support) (non_empty_supp f hf)
3

4

5 def make_const_term_nonzero (f : ℤ[X]) (hf : f ≠ 0) : ℤ[X] :=
6 { support := finset.image (λ i : ℕ, i-(min_degree_term f hf))

f.support,↪→

7 to_fun := (λ n, (f.coeff (n+(min_degree_term f hf)))),
8 mem_support_to_fun := begin
9 intro n, split, intro hn, rw finset.mem_image at hn, choose a

ha using hn, rw <-ha.2, rw nat.sub_add_cancel,↪→

10 have eq2 := (f.3 a).1 ha.1, exact eq2,
11 rw min_degree_term, exact finset.min'_le f.support

(non_empty_supp f hf) a ha.1,↪→

12 intro hn, rw finset.mem_image, use n + min_degree_term f hf,
13 split,
14 exact (f.3 (n + min_degree_term f hf)).2 hn, simp only

[nat.add_sub_cancel],↪→

15 end,}

In other words, we divide g by Xm where m is the degree of the lowest non-zero
monomial of g.

Because for any x ≥ 0, lim
n→∞

xn

n!
= 0 and there is an infinite amount of

primes, we have the following theorem serving the coup de grace of attacking
the algebraicity of e.

Theorem 3.3.7. For any integer z and non-negative real number M , there is
some prime number p > z such that (p− 1)! > Mp

1 theorem coup_de_grace (M : ℝ) (hM : M ≥ 0) (z : ℤ) : ∃ p :
nat.primes, (p.val:ℤ) > z ∧ ((p.val-1).fact:ℝ) > M^p.val↪→

Theorem 3.3.8. e is transcendental.
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1 theorem e_transcendental : transcendental e :=

Proof. We prove by contradiction. Assume e is algebraic then there is an integer
polynomial g such that evalg(e) = 0. Divide g by some suitable power of X if
necessary, we can assume that g has a non-zero constant coefficient.

2 begin
3 by_contra e_algebraic,
4 rw is_algebraic at e_algebraic,
5 choose g' g'_def using e_algebraic,
6 have g'_nonzero := g'_def.1,
7 have e_root_g' := g'_def.2,
8 generalize g_def : make_const_term_nonzero g' g'_nonzero = g,
9 have coeff_zero_nonzero : (g.coeff 0) ≠ 0,
10 rw <-g_def, apply coeff_zero_after_change,
11 have e_root_g : (polynomial.aeval ℤ ℝ e) g = 0,
12 rw <-g_def,
13 apply non_zero_root_same, rw e, exact (1:ℝ).exp_ne_zero, exact

e_root_g',↪→

There is a prime number p such that p > n, p > |g0| and (p − 1)! > Mp

where M is defined as in theorem 3.3.3. Then (p−1)! > Mp ≥ |Jp(g)| > (p−1)!
is the desired contradiction.

14 have contradiction := contradiction (M g) _ (max g.nat_degree
(abs (g.coeff 0))),↪→

15 choose p Hp using contradiction,
16 have abs_J_lower_bound := abs_J_lower_bound g e_root_g

coeff_zero_nonzero p.val p.property _,↪→

17 have rid := le_trans abs_J_lower_bound abs_J_upper_bound,
18 simplification_steps_omitted
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Conclusion and future work

This project lives in an interdisciplinary area between mathematics and com-
puter science. Even interactive theorem proving is not necessarily suitable for
every mathematician, its pedagogical value is enormous because by formalising
theorems the logic of proofs are disentangled and one is forced to be precise
and explicit. Hence a proof in Lean often challenge users to prove intuitions in
a rigorous manner. For example, Alan Baker deemed the evaluation of Jp(g)
in equation 3.2 to be clear, but by formalising one has to get hands dirty by
actually performing the evaluation [Bak90]. Then anyone else interested in the
proof can choose to read or discard relevant sections depending on whether s/he
shares the same intuitions with the author.

This is perhaps both a blessing and a curse – by forbidding to use words like
“trivial” or “clearly”, one often finds her/himself proving truly trivial propositions
as well, for example to prove that Z1 ' Z. Hence there are at least two directions
in which future works could take. One is to formalise more theorems of interest
for example the transcendence of π; the other is to use the (meta-)programming
facilities of Lean to make more tactics so that learning and using Lean could
be more effortless.

The value of formalisation for research purpose might not manifest just now,
however, with a full-grown library of formalised theorems, computers should be
able to help much more with proofs for even now tools such as library_search
in Lean is trying to actively synthesize theorems for a proof. A more subtle
aspect of a more specialised branch of dependent type theory, namely homotopy
type theory, is that the univalent foundations, which is compatible with either
constructivism or intuitionistic logic, can provide justification for identification
of isomorphic objects3[Uni13].

3without abusing notation
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